

github3.py: A Library for Using GitHub’s REST API

Release v1.2.0.

github3.py is wrapper for the GitHub API [http://developer.github.com] written in python. The design of
github3.py is centered around having a logical organization of the methods
needed to interact with the API. As an example, let’s get information about a
user:

from github3 import login

gh = login('sigmavirus24', password='<password>')

sigmavirus24 = gh.me()
<AuthenticatedUser [sigmavirus24:Ian Stapleton Cordasco]>

print(sigmavirus24.name)
Ian Stapleton Cordasco
print(sigmavirus24.login)
sigmavirus24
print(sigmavirus24.followers_count)
4

for f in gh.followers():
 print(str(f))

kennethreitz = gh.user('kennethreitz')
<User [kennethreitz:Kenneth Reitz]>

print(kennethreitz.name)
print(kennethreitz.login)
print(kennethreitz.followers_count)

followers = [str(f) for f in gh.followers('kennethreitz')]

There are several examples of different aspects of using github3.py

	Using Two-factor Authentication with github3.py

	Using Tokens for Your Projects
	Requesting a token

	Gist Code Examples
	Listing gists after authenticating

	Creating a gist after authenticating

	Creating an anonymous gist

	Git Code Examples
	Creating a Blob Object

	Creating a Tag Object

	GitHub Examples
	Assumptions

	Adding a new key to your account

	Deleting the key we just created

	Creating a new repository

	Create a commit to change an existing file

	Follow another user on GitHub

	Changing your user information

	Issue Code Examples
	Administering Issues

	Example issue to comment on

	Importing an issue

	Taking Advantage of GitHubIterator
	The First Approach

	The Second Approach

	Using Logging with github3.py

	A Conversation With Octocat

Installation

$ pip install github3.py

User Guide

	User Guide for github3.py
	Getting Started

	Using the Repository APIs

API Reference Documentation

	API Reference
	Anonymous Functional API

	App and Installation API Objects

	Authorizations API Classes

	Events API Classes

	Gist API Objects

	Git API Classes

	GitHub Object

	Issues API Objects

	Notifications

	Organizations and their Related Objects

	Pull Requests and their Associated Objects

	Repository API Objects

	Search Results

	Custom Iterator Structures

	Users and their Associated Objects

	Internals

Version History

	Release Notes and History
	1.x Release Series

	0.x Release Series

Contributing

All development happens on GitHub [https://github.com/sigmavirus24/github3.py]. Please remember to add yourself to the
list of contributors in AUTHORS.rst, especially if you’re going to be
working on the list below.

Contributor Friendly Work

In order of importance:

Documentation

I know I’m not the best at writing documentation so if you want to clarify
or correct something, please do so.

Examples

Have a clever example that takes advantage of github3.py? Feel free to
share it.

Otherwise, feel free to example the list of issues where we would like help [https://github.com/sigmavirus24/github3.py/labels/help%20wanted]
and feel free to take one.

Running the Unittests

The tests are generally run using tox. Tox can be installed like so

pip install tox

We test against PyPy and the following versions of Python:

	2.7

	3.4

	3.5

	3.6

If you simply run tox it will run tests against all of these versions of
python and run flake8 against the codebase as well. If you want to run
against one specific version, you can do

tox -e py36

And if you want to run tests against a specific file, you can do

tox -e py36 -- tests/unit/test_github.py

To run the tests, tox uses py.test so you can pass any options or
parameters to py.test after specifying --. For example, you can get
more verbose output by doing

tox -e py36 -- -vv

	Writing Tests for github3.py
	Unit Tests
	Mocks

	Example - Testing the Release Object

	Integration Tests
	Betamax

	Example - Testing the Release Object

	Recording Cassettes that Require Authentication/Authorization

Contact

	Twitter: @sigmavirus24 [https://twitter.com/sigmavirus24]

	Private email: graffatcolmingov [at] gmail

Using Two-factor Authentication with github3.py

GitHub recently added support for Two-factor Authentication to github.com
and shortly thereafter added support for it on api.github.com. In version
0.8, github3.py also added support for it and you can use it right now.

To use Two-factor Authentication, you must define your own function that will
return your one time authentication code. You then provide that function when
logging in with github3.py.

For example:

import github3

try:
 # Python 2
 prompt = raw_input
except NameError:
 # Python 3
 prompt = input

def my_two_factor_function():
 code = ''
 while not code:
 # The user could accidentally press Enter before being ready,
 # let's protect them from doing that.
 code = prompt('Enter 2FA code: ')
 return code

g = github3.login('sigmavirus24', 'my_password',
 two_factor_callback=my_two_factor_function)

Then each time the API tells github3.py it requires a Two-factor Authentication
code, github3.py will call my_two_factor_function which prompt you for it.

Using Tokens for Your Projects

Let’s say you’re designing an application that uses github3.py. If your
intention is to have users authenticate, you have a few options.

	Ask the user to enter their credentials each time they start the
application. (Or save the username somewhere, and just ask for the
password.)

	Ask the user to supply their credentials once and store them somewhere for
later use.

	Ask the user to supply their credentials once, get an authorization token
and store that for later use.

The first isn’t a bad method at all, it just unfortunately may lead to unhappy
users, this should always be an option though. The second (as I already noted)
is a bad idea. Even if you obfuscate the username and password, they can still
be discovered and no level of obfuscation is clever enough. (May I also take
this moment to remind people that base64 is not encryption.) The last is
probably the least objectionable of the evils. The token has scopes so there
is only so much someone can do with it and it works well with github3.py.

Requesting a token

If you’re not doing a web application, you are more than welcome to use
github3.py (otherwise work with redirects [http://developer.github.com/v3/oauth/#redirect-urls]). Let’s say your application needs
access to public and private repositories, and the users but not to gists.
Your scopes [http://developer.github.com/v3/oauth/#scopes] should be ['user', 'repo']. I’m also assuming your
application will not be deleting any repositories. The only things left to do
are collect the username and password and give a good description for your
application.

from github3 import authorize
from getpass import getuser, getpass

user = getuser()
password = ''

while not password:
 password = getpass('Password for {0}: '.format(user))

note = 'github3.py example app'
note_url = 'http://example.com'
scopes = ['user', 'repo']

auth = authorize(user, password, scopes, note, note_url)

with open(CREDENTIALS_FILE, 'w') as fd:
 fd.write(auth.token + '\n')
 fd.write(auth.id)

In the future, you can then read that token in without having to bother your
user. If at some later point in the lifetime of your application you need more
privileges, you simply do the following:

from github3 import login

token = id = ''
with open(CREDENTIALS_FILE, 'r') as fd:
 token = fd.readline().strip() # Can't hurt to be paranoid
 id = fd.readline().strip()

gh = login(token=token)
auth = gh.authorization(id)
auth.update(add_scopes=['repo:status', 'gist'], rm_scopes=['user'])

if you want to be really paranoid, you can then test:
token == auth.token
in case the update changes the token

Gist Code Examples

Examples with Gists

Listing gists after authenticating

from github3 import login

gh = login(username, password)
gists = [g for g in gh.iter_gists()]

Creating a gist after authenticating

from github3 import login

gh = login(username, password)
files = {
 'spam.txt' : {
 'content': 'What... is the air-speed velocity of an unladen swallow?'
 }
 }
gist = gh.create_gist('Answer this to cross the bridge', files, public=False)
gist == <Gist [gist-id]>
print(gist.html_url)

Creating an anonymous gist

from github3 import create_gist

files = {
 'spam.txt' : {
 'content': 'What... is the air-speed velocity of an unladen swallow?'
 }
 }
gist = create_gist('Answer this to cross the bridge', files)
comments = [c for c in gist.iter_comments()]
[]
comment = gist.create_comment('Bogus. This will not work.')
Which of course it didn't, because you're not logged in
comment == None
print(gist.html_url)

In the above examples 'spam.txt' is the file name. GitHub will autodetect
file type based on extension provided. 'What... is the air-speed velocity of
an unladen swallow?' is the file’s content or body. 'Answer this to cross
the bridge' is the gist’s description. While required by github3.py, it is
allowed to be empty, e.g., '' is accepted by GitHub.

Note that anonymous gists are always public.

Git Code Examples

The GitHub API does not just provide an API to interact with GitHub’s
features. A whole section of the API provides a RESTful API to git operations
that one might normally perform at the command-line or via your git client.

Creating a Blob Object

One of the really cool (and under used, it seems) parts of the GitHub API
involves the ability to create blob objects.

from github3 import login
g = login(username, password)
repo = g.repository('sigmavirus24', 'Todo.txt-python')
sha = repo.create_blob('Testing blob creation', 'utf-8')
sha
u'57fad9a39b27e5eb4700f66673ce860b65b93ab8'
blob = repo.blob(sha)
blob.content
u'VGVzdGluZyBibG9iIGNyZWF0aW9u\n'
blob.decoded
u'Testing blob creation'
blob.encoding
u'base64'

Creating a Tag Object

GitHub provides tar files for download via tag objects. You can create one via
git tag or you can use the API.

from github3 import login
g = login(username, password)
repo = g.repository('sigmavirus24', 'github3.py')
tag = repo.tag('cdba84b4fede2c69cb1ee246b33f49f19475abfa')
tag
<Tag [cdba84b4fede2c69cb1ee246b33f49f19475abfa]>
tag.object.sha
u'24ea44d302c6394a0372dcde8fd8aed899c0034b'
tag.object.type
u'commit'

GitHub Examples

Examples using the GitHub object.

Assumptions

I’ll just make some basic assumptions for the examples on this page. First,
let’s assume that all you ever import from github3.py is login and
GitHub and that you have already received your GitHub
object g. That might look like this:

from github3 import login, GitHub
from getpass import getpass, getuser
import sys
try:
 import readline
except ImportError:
 pass

try:
 user = raw_input('GitHub username: ')
except KeyboardInterrupt:
 user = getuser()

password = getpass('GitHub password for {0}: '.format(user))

Obviously you could also prompt for an OAuth token
if not (user and password):
 print("Cowardly refusing to login without a username and password.")
 sys.exit(1)

g = login(user, password)

So anywhere you see g used, you can safely assume that it is an instance
where a user has authenticated already.

For the cases where we do not need an authenticated user, or where we are
trying to demonstrate the differences between the two, I will use anon.
anon could be instantiated like so:

anon = GitHub()

Also let’s define the following constants:

sigma = 'sigmavirus24'
github3 = 'github3.py'
todopy = 'Todo.txt-python'
kr = 'kennethreitz'
requests = 'requests'

We may not need all of them, but they’ll be useful

Adding a new key to your account

try:
 path = raw_input('Path to key: ')
except KeyboardInterrupt:
 path = ''

try:
 name = raw_input('Key name: ')
except KeyboardInterrupt:
 name = ''

if not (path and name): # Equivalent to not path or not name
 print("Cannot create a new key without a path or name")
 sys.exit(1)

with open(path, 'r') as key_file:
 key = g.create_key(name, key_file)
 if key:
 print('Key {0} created.'.format(key.title))
 else:
 print('Key addition failed.')

Deleting the key we just created

Assuming we still have key from the previous example:

if g.delete_key(key.id):
 print("Successfully deleted key {0}".format(key.id))

There would actually be an easier way of doing this, however, if we do have the
key object that we created:

if key.delete():
 print("Successfully deleted key {0}".format(key.id))

Creating a new repository

repo = {}
keys = ['name', 'description', 'homepage', 'private', 'has_issues',
 'has_wiki', 'has_downloads']

for key in keys:
 try:
 repo[key] = raw_input(key + ': ')
 except KeyboardInterrupt:
 pass

r = None
if repo.get('name'):
 r = g.create_repository(repo.pop('name'), **repo)

if r:
 print("Created {0} successfully.".format(r.name))

Create a commit to change an existing file

repo.contents('/README.md').update('commit message', 'file content'.encode('utf-8'))

Follow another user on GitHub

I’m cheating here and using most of the follow functions in one example

if not g.is_following(sigma):
 g.follow(sigma)

if not g.is_subscribed(sigma, github3py):
 g.subscribe(sigma, github3py)

if g.is_subscribed(sigma, todopy):
 g.unsubscribe(sigma, todopy)

for follower in g.iter_followers():
 print("{0} is following me.".format(follower.login))

for followee in g.iter_following():
 print("I am following {0}.".format(followee.login))

if g.is_following(sigma):
 g.unfollow(sigma)

Changing your user information

Note that you can not change your login name via the API.

new_name = 'J. Smith'
blog = 'http://www.example.com/'
company = 'Vandelay Industries'
bio = """# J. Smith

A simple man working at a latex factory
"""

if g.update_user(new_name, blog, company, bio=bio):
 print('Profile updated.')

This is the same as:

me = g.me() # or me = g.user(your_user_name)
if me.update(new_name, blog, company, bio=bio):
 print('Profile updated.')

Issue Code Examples

Examples using Issues

Administering Issues

Let’s assume you have your username and password stored in user and pw
respectively, you have your repository name stored in repo, and the number
of the issue you’re concerned with in num.

from github3 import login

gh = login(user, pw)
issue = gh.issue(user, repo, num)
if issue.is_closed():
 issue.reopen()

issue.edit('New issue title', issue.body + '\n------\n**Update:** Text to append')

Closing and Commenting on Issues

Assuming issue is the same as above ...
issue.create_comment('This should be fixed in 6d4oe5. Closing as fixed.')
issue.close()

Example issue to comment on

If you would like to test the above, see
issue #108 [https://github.com/sigmavirus24/github3.py/issues/108]. Just
follow the code there and fill in your username, password (or token), and
comment message. Then run the script and watch as the issue opens in your
browser focusing on the comment you just created.

The following shows how you could use github3.py to fetch and display your
issues in your own style and in your web browser.

import webbrowser
import tempfile
import github3

template = """<html><head></head><body>{0}</body></html>"""

i = github3.issue('kennethreitz', 'requests', 868)

with tempfile.NamedTemporaryFile() as tmpfd:
 tmpfd.write(template.format(i.body_html))
 webbrowser.open('file://' + tmpfd.name)

Or how to do the same by wrapping the lines in your terminal.

import github3
import textwrap

i = github3.issue('kennethreitz', 'requests', 868)
for line in textwrap.wrap(i.body_text, 78, replace_whitespace=False):
 print line

Importing an issue

Not only can you create new issues, but you can import existing ones. When
importing, you preserve the timestamp creation date; you can preserve the
timestamp(s) for comment(s) too.

import github3
gh = github3.login(token=token)
issue = {
 'title': 'Documentation issue',
 'body': 'Missing links in index.html',
 'created_at': '2011-03-11T17:00:40Z'
}

repository = gh.repository(user, repo)
repository.import_issue(**issue)

Status of imported issue

Here’s how to check the status of the imported issue.

import github3
issue = repository.imported_issue(issue_num)
print issue.status

Taking Advantage of GitHubIterator

Let’s say that for some reason you’re stalking all of GitHub’s users and you
just so happen to be using github3.py to do this. You might write code that
looks like this:

import github3

g = github3.login(USERNAME, PASSWORD)

for u in g.iter_all_users():
 add_user_to_database(u)

The problem is that you will then have to reiterate over all of the users each
time you want to get the new users. You have two approaches you can take to
avoid this with GitHubIterator.

You can not call the method directly in the for-loop and keep the iterator as
a separate reference like so:

i = g.iter_all_users():

for u in i:
 add_user_to_database(u)

The First Approach

Then after your first pass through your GitHubIterator object will have an
attribute named etag. After you’ve added all the currently existing users
you could do the following to retrieve the new users in a timely fashion:

import time

while True:
 i.refresh(True)
 for u in i:
 add_user_to_database(u)

 time.sleep(120) # Sleep for 2 minutes

The Second Approach

etag = i.etag
Store this somewhere

Later when you start a new process or go to check for new users you can
then do

i = g.iter_all_users(etag=etag)

for u in i:
 add_user_to_database(u)

If there are no new users, these approaches won’t impact your rate limit at
all. This mimics the ability to conditionally refresh data on almost all other
objects in github3.py.

Using Logging with github3.py

New in version 0.6.0.

The following example shows how to set up logging for github3.py. It is off by
default in the library and will not pollute your logs.

import github3
import logging

Set up a file to have all the logs written to
file_handler = logging.FileHandler('github_script.log')

Send the logs to stderr as well
stream_handler = logging.StreamHandler()

Format the log output and include the log level's name and the time it was
generated
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')

Use that Formatter on both handlers
file_handler.setFormatter(formatter)
stream_handler.setFormatter(formatter)

Get the logger used by github3.py internally by referencing its name
directly
logger = logging.getLogger('github3')
Add the handlers to it
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
Set the level which determines what you see
logger.setLevel(logging.DEBUG)

Make a library call and see the information posted
r = github3.repository('sigmavirus24', 'github3.py')
print('{0} - {0.html_url}'.format(r))

One thing to note is that if you want more detailed information about what is
happening while the requests are sent, you can do the following:

import logging
urllib3 = logging.getLogger('requests.packages.urllib3')

And configure the logger for urllib3. Unfortunately, requests itself doesn’t
provide any logging, so the best you can actually get is by configuring
urllib3.

You will see messages about the following in the logs:

	Construction of URLs used in requests, usually in the form:
('https://api.github.com', 'repos', 'sigmavirus24', 'github3.py')

	What request is being sent, e.g.,
POST https://api.github.com/user kwargs={}

	If JSON is trying to be extracted from the response, what the response’s
status code was, what the expected status code was and whether any JSON was
actually returned.

A Conversation With Octocat

import github3

print("Hey Octocat")
print(github3.octocat("Hey Ian"))
print("What do you think about github3.py?")
print(github3.octocat("github3.py rocks!"))
print("Thanks Octocat, that means a lot coming from you.")
print("FIN.")
print("""Epilogue:
 The preceding conversation was entirely fictional. If you didn't realize
 that, you need to get out more.
""")

What you should see

Hey Octocat

 MMM. .MMM
 MMMMMMMMMMMMMMMMMMM
 MMMMMMMMMMMMMMMMMMM _________
 MMMMMMMMMMMMMMMMMMMMM | |
 MMMMMMMMMMMMMMMMMMMMMMM | Hey Ian |
 MMMMMMMMMMMMMMMMMMMMMMMM |_ _____|
 MMMM::- -:::::::- -::MMMM |/
 MM~:~ ~:::::~ ~:~MM
 .. MMMMM::. .:::+:::. .::MMMMM ..
 .MM::::: ._. :::::MM.
 MMMM;:::::;MMMM
 -MM MMMMMMM
 ^ M+ MMMMMMMMM
 MMMMMMM MM MM MM
 MM MM MM MM
 MM MM MM MM
 .~~MM~MM~MM~MM~~.
         ~~~~MM:~MM~~~MM~:MM~~~~
        ~~~~~~==~==~~~==~==~~~~~~
         ~~~~~~==~==~==~==~~~~~~
             :~==~==~==~==~~

What do you think about github3.py?

           MMM.           .MMM
           MMMMMMMMMMMMMMMMMMM
           MMMMMMMMMMMMMMMMMMM      ___________________
          MMMMMMMMMMMMMMMMMMMMM    |                   |
         MMMMMMMMMMMMMMMMMMMMMMM   | github3.py rocks! |
        MMMMMMMMMMMMMMMMMMMMMMMM   |_   _______________|
        MMMM::- -:::::::- -::MMMM    |/
         MM~:~   ~:::::~   ~:~MM
    .. MMMMM::. .:::+:::. .::MMMMM ..
          .MM::::: ._. :::::MM.
             MMMM;:::::;MMMM
      -MM        MMMMMMM
      ^  M+     MMMMMMMMM
          MMMMMMM MM MM MM
               MM MM MM MM
               MM MM MM MM
            .~~MM~MM~MM~MM~~.
         ~~~~MM:~MM~~~MM~:MM~~~~
        ~~~~~~==~==~~~==~==~~~~~~
         ~~~~~~==~==~==~==~~~~~~
 :~==~==~==~==~~

Thanks Octocat, that means a lot coming from you.
FIN.
Epilogue:
 The preceding conversation was entirely fictional. If you didn't realize
 that, you need to get out more. And yes, I did just have a
 conversation with an API. Cool, no? (Sad too, I guess.)

User Guide for github3.py

This section of our documentation is intended to guide you, the user, through
various ways of using the library and to introduce you to some high-level
concepts in the library.

	Getting Started
	Using the library

	Logging into GitHub using github3.py

	Two-Factor Authentication and github3.py

	Using the Repository APIs
	Retrieving Repositories

	Interacting with Repositories

Getting Started

This chapter in our documentation will teach you how to get started using
github3.py after you’ve installed the library.

Using the library

To get started using the library, it’s important to note that the module that
is provided by this library is called github3. To use it you can run:

import github3

where necessary.

Logging into GitHub using github3.py

Once you’ve imported the module, you can get started using the API. It’s
recommended that you authenticate with GitHub to avoid running into their
rate limits [https://developer.github.com/v3/#rate-limiting]. To do so you have a few options.

First, you can use your username and password. We advise you not to type your
password into your shell or python console directly as others can view that
after the fact. For the sake of an example, let’s assume that you have two
variables bound as username and password that contain your username
and password. You can then do:

import github3

github = github3.login(username=username, password=password)

Second, you can generate an access token [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] and use that. Let’s presume you
have a variable bound as token that contains your access token.

import github3

github = github3.login(token=token)

Third, if you’re using a GitHub Enterprise installation you can use similar
methods above, but you’ll need to use enterprise_login(),
e.g.,

import github3

githubent = github3.enterprise_login(
 url='https://github.myenterprise.example.com',
 username=username,
 password=password,
)

githubent = github3.enterprise_login(
 url='https://github.myenterprise.example.com',
 token=token,
)

Two-Factor Authentication and github3.py

GitHub has long supported the use of a second-factor authentication (a.k.a,
2FA) mechanism for logging in. This provides some extra security, especially
around administrative actions on the website. If you choose to login with
simply your username and password and you have to provide github3.py with a
mechanism for obtaining your token and providing it to GitHub.

An example mechanism is as follows:

This assumes Python 3
import github3

def second_factor_retrieval():
 """Provide a way to retrieve the code from the user."""
 code = ''
 while not code:
 code = input('Enter 2FA code: ')
 return code

github = github3.login(username, password,
 two_factor_callback=second_factor_retrieval)

This means that for every API call made, GitHub will force us to prompt you
for a new 2FA code. This is obviously not ideal. In those situations, you
almost certainly want to obtain an access token.

Using the Repository APIs

Now that we have learned how to set up a client for
use with our APIs, let’s begin to review how github3.py implements the
Repositories API [https://github.com/sigmavirus24/github3.py/pull/836].

Retrieving Repositories

Once you’ve logged in you will have an instance of
GitHub or GitHubEnterprise.
Let’s assume either one is bound to a variable called github. To retrieve
a single repository that we know the
owner and name of, we would do the following:

repository = github.repository(owner, repository_name)

For example, let’s retrieve the repository of the uritemplate package that
github3.py relies on:

uritemplate = github.repository('python-hyper', 'uritemplate')

It’s also possible for us to retrieve multiple repositories owned by the same
user or organization:

for short_repository in github.repositories_by('python-hyper'):
 ...

When listing repositories, like listing other objects, the GitHub API doesn’t
return the full representation of the object. In this case, github3.py returns
a different object to represent a short repository. This object has fewer attributes, but
can be converted into a full repository like so:

for short_repository in github.repositories_by('python-hyper'):
 full_repository = short_repository.refresh()

We now have two separate objects for the repository based on how GitHub
represents them. Both objects have the same methods attached to them. There’s
just a different set of attributes on each.

Interacting with Repositories

Repositories are central to many things in GitHub as well as in the API and as
result they have many attributes and methods. It’s possible to list branches,
collaborators, commits, contributors, deployments, forks, issues, projects,
pull requests, refs, and more.

For example, we could build a tiny function that checks if a contributor has
deleted their fork:

uritemplate = github.repository('python-hyper', 'uritemplate')
contributors_without_forks = (set(uritemplate.contributors()) -
 set(fork.owner for fork in uritemplate.forks()))
print(f'The following contributors deleted their forks of {uritemplate!r}')
for contributor in sorted(contributors_without_forks, key=lambda c: c.login):
 print(f' * {contributor.login}')

The output should look like

The following contributors deleted their forks of <Repository [python-hyper/uritemplate]>
 * eugene-eeo
 * jpotts18
 * sigmavirus24
 * thierryba

API Reference

	Anonymous Functional API
	Module Contents
	Anonymous Functions

	Enterprise Use

	App and Installation API Objects

	Authorizations API Classes

	Events API Classes
	The Event Object

	Event Related Objects

	Gist API Objects
	Gist Representations

	Files in a Gist

	The History of a Gist

	Git API Classes
	Blob Object(s)

	Commit Object(s)

	Tree Object(s)

	Git Object, Reference, and Tag Object(s)

	GitHub Object
	GitHub.com Object
	Examples

	GitHubEnterprise Object

	GitHubStatus Object

	GitHubSession Object

	Issues API Objects
	Issues

	Issue Comments

	Issue Events

	Issue Labels

	Milestone Objects

	Notifications
	Notification Objects

	Organizations and their Related Objects
	Team Objects

	Organization Objects

	Pull Requests and their Associated Objects
	Pull Request Objects

	Review Objects

	Repository API Objects
	Repository Objects

	Git-related Objects
	Branches

	Commits

	Release Objects

	Pages Objects

	Comment Objects

	Deployment and Status Objects

	Contributor Statistics Objects

	Search Results

	Custom Iterator Structures

	Users and their Associated Objects
	User Objects

	AuthenticatedUser Peripherals

Internals

	Decorators

	Models

Anonymous Functional API

This part of the documentation covers the API. This is intended to be a
beautifully written module which allows the user (developer) to interact with
github3.py elegantly and easily.

Module Contents

To interact with the GitHub API you can either authenticate to access protected
functionality or you can interact with it anonymously. Authenticating provides
more functionality to the user (developer).

To authenticate, you may use github3.login().

	
github3.login(username=None, password=None, token=None, two_factor_callback=None)

	Construct and return an authenticated GitHub session.

Note

To allow you to specify either a username and password combination or
a token, none of the parameters are required. If you provide none of
them, you will receive None.

	Parameters

	
	username (str) – login name

	password (str) – password for the login

	token (str) – OAuth token

	two_factor_callback (func) – (optional), function you implement to
provide the Two-factor Authentication code to GitHub when necessary

	Returns

	GitHub

With the GitHub object that is returned you have
access to more functionality. See that object’s documentation for more
information.

To use the API anonymously, you can also create a new
GitHub object, e.g.,

from github3 import GitHub

gh = GitHub()

Or you can use the following functions:

Anonymous Functions

	
github3.authorize(*args, **kwargs)

	Obtain an authorization token for the GitHub API.

Deprecated since version 1.2.0: Use github3.github.GitHub.authorize() instead.

	Parameters

	
	username (str) – (required)

	password (str) – (required)

	scopes (list) – (required), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	note (str) – (optional), note about the authorization

	note_url (str) – (optional), url for the application

	client_id (str) – (optional), 20 character OAuth client key for which
to create a token

	client_secret (str) – (optional), 40 character OAuth client secret for
which to create the token

	two_factor_callback (func) – (optional), function to call when a
Two-Factor Authentication code needs to be provided by the user.

	github (GitHub) – (optional), GitHub (or GitHubEnterprise) object for
login.

	Returns

	Authorization

Deprecated Functions

Warning

Due to GitHub’s anonymous rate limits, it’s strongly advised that you don’t
use these functions.

	
github3.create_gist(*args, **kwargs)

	Create an anonymous public gist.

Deprecated since version 1.2.0: Use github3.github.GitHub.create_gist() instead.

	Parameters

	
	description (str) – (required), short description of the gist

	files (dict) – (required), file names with associated
dictionaries for content, e.g.
{‘spam.txt’: {‘content’: ‘File contents …’}}

	Returns

	Gist

	
github3.gist(*args, **kwargs)

	Retrieve the gist identified by id_num.

Deprecated since version 1.2.0: Use github3.github.GitHub.gist() instead.

	Parameters

	id_num (int) – (required), unique id of the gist

	Returns

	Gist

	
github3.gitignore_template(*args, **kwargs)

	Return the template for language.

Deprecated since version 1.2.0: Use github3.github.GitHub.gitignore_template() instead.

	Returns

	str

	
github3.gitignore_templates(*args, **kwargs)

	Return the list of available templates.

Deprecated since version 1.2.0: Use github3.github.GitHub.gitignore_templates() instead.

	Returns

	list of template names

	
github3.issue(*args, **kwargs)

	Anonymously gets issue :number on :owner/:repository.

Deprecated since version 1.2.0: Use github3.github.GitHub.issue() instead.

	Parameters

	
	owner (str) – (required), repository owner

	repository (str) – (required), repository name

	number (int) – (required), issue number

	Returns

	Issue

	
github3.issues_on(*args, **kwargs)

	Iterate over issues on owner/repository.

Deprecated since version 1.2.0: Use github3.github.GitHub.issues_on() instead.

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	owner (str) – login of the owner of the repository

	repository (str) – name of the repository

	milestone (int) – None, ‘*’, or ID of milestone

	state (str) – accepted values: (‘all’, ‘open’, ‘closed’)
api-default: ‘open’

	assignee (str) – ‘*’ or login of the user

	mentioned (str) – login of the user

	labels (str) – comma-separated list of label names, e.g.,
‘bug,ui,@high’

	sort (str) – accepted values: (‘created’, ‘updated’, ‘comments’)
api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’)
api-default: desc

	since (datetime or string) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), number of issues to return.
Default: -1 returns all issues

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of ShortIssues

	
github3.all_repositories(*args, **kwargs)

	Iterate over every repository in the order they were created.

Deprecated since version 1.2.0: Use github3.github.GitHub.all_repositories() instead.

	Parameters

	
	number (int) – (optional), number of repositories to return.
Default: -1, returns all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
github3.all_users(*args, **kwargs)

	Iterate over every user in the order they signed up for GitHub.

Deprecated since version 1.2.0: Use github3.github.GitHub.all_users() instead.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1,
returns all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of User

	
github3.all_events(*args, **kwargs)

	Iterate over public events.

Deprecated since version 1.2.0: Use github3.github.GitHub.all_events() instead.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Event

	
github3.followers_of(*args, **kwargs)

	List the followers of username.

Deprecated since version 1.2.0: Use github3.github.GitHub.followers_of() instead.

	Parameters

	
	username (str) – (required), login of the person to list the followers
of

	number (int) – (optional), number of followers to return, Default: -1,
return all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of User

	
github3.followed_by(*args, **kwargs)

	List the people username follows.

Deprecated since version 1.2.0: Use github3.github.GitHub.followed_by() instead.

	Parameters

	
	username (str) – (required), login of the user

	number (int) – (optional), number of users being followed by username
to return. Default: -1, return all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of User

	
github3.public_gists(*args, **kwargs)

	Iterate over all public gists.

Deprecated since version 1.2.0: Use github3.github.GitHub.public_gists() instead.

New in version 1.0: This was split from github3.iter_gists before 1.0.

	Parameters

	
	number (int) – (optional), number of gists to return. Default: -1,
return all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Gist

	
github3.gists_by(*args, **kwargs)

	Iterate over gists created by the provided username.

Deprecated since version 1.2.0: Use github3.github.GitHub.gists_by() instead.

	Parameters

	
	username (str) – (required), if provided, get the gists for this user
instead of the authenticated user.

	number (int) – (optional), number of gists to return. Default: -1,
return all of them

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Gist

	
github3.organizations_with(*args, **kwargs)

	List the organizations with username as a member.

Deprecated since version 1.2.0: Use github3.github.GitHub.organizations_with() instead.

	Parameters

	
	username (str) – (required), login of the user

	number (int) – (optional), number of orgs to return. Default: -1,
return all of the issues

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganization

	
github3.repositories_by(*args, **kwargs)

	List public repositories for the specified username.

Deprecated since version 1.2.0: Use github3.github.GitHub.organizations_with() instead.

New in version 0.6.

Note

This replaces github3.iter_repos

	Parameters

	
	username (str) – (required)

	type (str) – (optional), accepted values:
(‘all’, ‘owner’, ‘member’)
API default: ‘all’

	sort (str) – (optional), accepted values:
(‘created’, ‘updated’, ‘pushed’, ‘full_name’)
API default: ‘created’

	direction (str) – (optional), accepted values:
(‘asc’, ‘desc’), API default: ‘asc’ when using ‘full_name’,
‘desc’ otherwise

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository
objects

	
github3.starred_by(*args, **kwargs)

	Iterate over repositories starred by username.

Deprecated since version 1.2.0: Use github3.github.GitHub.starred_by() instead.

	Parameters

	
	username (str) – (optional), name of user whose stars you want to see

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
github3.subscriptions_for(*args, **kwargs)

	Iterate over repositories subscribed to by username.

Deprecated since version 1.2.0: Use github3.github.GitHub.subscriptions_for() instead.

	Parameters

	
	username (str) – name of user whose subscriptions you want to see

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
github3.markdown(*args, **kwargs)

	Render an arbitrary markdown document.

Deprecated since version 1.2.0: Use github3.github.GitHub.markdown() instead.

	Parameters

	
	text (str) – (required), the text of the document to render

	mode (str) – (optional), ‘markdown’ or ‘gfm’

	context (str) – (optional), only important when using mode ‘gfm’,
this is the repository to use as the context for the rendering

	raw (bool) – (optional), renders a document like a README.md, no gfm,
no context

	Returns

	str – HTML formatted text

	
github3.octocat(*args, **kwargs)

	Return an easter egg from the API.

Deprecated since version 1.2.0: Use github3.github.GitHub.octocat() instead.

	Params str say

	(optional), pass in what you’d like Octocat to say

	Returns

	ascii art of Octocat

	
github3.organization(*args, **kwargs)

	Return an Organization object for the login name.

	Parameters

	username (str) – (required), login name of the org

	Returns

	the organization

	Return type

	Organization

	
github3.pull_request(*args, **kwargs)

	Anonymously retrieve pull request :number on :owner/:repository.

Deprecated since version 1.2.0: Use github3.github.GitHub.pull_request() instead.

	Parameters

	
	owner (str) – (required), repository owner

	repository (str) – (required), repository name

	number (int) – (required), pull request number

	Returns

	PullRequest

	
github3.rate_limit(*args, **kwargs)

	Return a dictionary with information from /rate_limit.

The dictionary has two keys: resources and rate. In
resources you can access information about core or search.

Note: the rate key will be deprecated before version 3 of the
GitHub API is finalized. Do not rely on that key. Instead, make your
code future-proof by using core in resources, e.g.,

rates = g.rate_limit()
rates['resources']['core'] # => your normal ratelimit info
rates['resources']['search'] # => your search ratelimit info

New in version 0.8.

	Returns

	ratelimit mapping

	Return type

	dict

	
github3.repository(*args, **kwargs)

	Retrieve the desired repository.

	Parameters

	
	owner (str) – (required)

	repository (str) – (required)

	Returns

	the repository

	Return type

	Repository

	
github3.search_code(*args, **kwargs)

	Find code via the code search API.

Deprecated since version 1.2.0: Use github3.github.GitHub.search_code() instead.

Warning

You will only be able to make 5 calls with this or other search
functions. To raise the rate-limit on this set of endpoints, create an
authenticated GitHub Session with
login.

The query can contain any combination of the following supported
qualifiers:

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the file contents, the file path, or
both.

	language Searches code based on the language it’s written in.

	fork Specifies that code from forked repositories should be
searched. Repository forks will not be searchable unless the fork
has more stars than the parent repository.

	size Finds files that match a certain size (in bytes).

	path Specifies the path that the resulting file must be at.

	extension Matches files with a certain extension.

	user or repo Limits searches to a specific user or
repository.

For more information about these qualifiers, see: http://git.io/-DvAuA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
addClass in:file language:js repo:jquery/jquery

	sort (str) – (optional), how the results should be sorted;
option(s): indexed; default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/4ct1eQ for more information

	number (int) – (optional), number of repositories to return.
Default: -1, returns all available repositories

	etag (str) – (optional), previous ETag header value

	Returns

	generator of CodeSearchResult

	
github3.search_issues(*args, **kwargs)

	Find issues by state and keyword

Deprecated since version 1.2.0: Use github3.github.GitHub.search_issues() instead.

Warning

You will only be able to make 5 calls with this or other search
functions. To raise the rate-limit on this set of endpoints, create an
authenticated GitHub Session with
login.

The query can contain any combination of the following supported
qualifers:

	type With this qualifier you can restrict the search to issues or
pull request only.

	in Qualifies which fields are searched. With this qualifier you can
restrict the search to just the title, body, comments, or any
combination of these.

	author Finds issues created by a certain user.

	assignee Finds issues that are assigned to a certain user.

	mentions Finds issues that mention a certain user.

	commenter Finds issues that a certain user commented on.

	involves Finds issues that were either created by a certain user,
assigned to that user, mention that user, or were commented on by that
user.

	state Filter issues based on whether they’re open or closed.

	labels Filters issues based on their labels.

	language Searches for issues within repositories that match a
certain language.

	created or updated Filters issues based on times of creation, or
when they were last updated.

	comments Filters issues based on the quantity of comments.

	user or repo Limits searches to a specific user or repository.

For more information about these qualifiers, see: http://git.io/d1oELA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
windows label:bug

	sort (str) – (optional), how the results should be sorted;
options: created, comments, updated; default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/QLQuSQ for more information

	number (int) – (optional), number of issues to return.
Default: -1, returns all available issues

	etag (str) – (optional), previous ETag header value

	Returns

	generator of IssueSearchResult

	
github3.search_repositories(*args, **kwargs)

	Find repositories via various criteria.

Deprecated since version 1.2.0: Use github3.github.GitHub.search_repositories() instead.

Warning

You will only be able to make 5 calls with this or other search
functions. To raise the rate-limit on this set of endpoints, create an
authenticated GitHub Session with
login.

The query can contain any combination of the following supported
qualifers:

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the repository name, description,
readme, or any combination of these.

	size Finds repositories that match a certain size (in
kilobytes).

	forks Filters repositories based on the number of forks, and/or
whether forked repositories should be included in the results at
all.

	created or pushed Filters repositories based on times of
creation, or when they were last updated. Format: YYYY-MM-DD.
Examples: created:<2011, pushed:<2013-02,
pushed:>=2013-03-06

	user or repo Limits searches to a specific user or
repository.

	language Searches repositories based on the language they’re
written in.

	stars Searches repositories based on the number of stars.

For more information about these qualifiers, see: http://git.io/4Z8AkA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
tetris language:assembly

	sort (str) – (optional), how the results should be sorted;
options: stars, forks, updated; default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/4ct1eQ for more information

	number (int) – (optional), number of repositories to return.
Default: -1, returns all available repositories

	etag (str) – (optional), previous ETag header value

	Returns

	generator of Repository

	
github3.search_users(*args, **kwargs)

	Find users via the Search API.

Deprecated since version 1.2.0: Use github3.github.GitHub.search_users() instead.

Warning

You will only be able to make 5 calls with this or other search
functions. To raise the rate-limit on this set of endpoints, create an
authenticated GitHub Session with
login.

The query can contain any combination of the following supported
qualifers:

	type With this qualifier you can restrict the search to just
personal accounts or just organization accounts.

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the username, public email, full
name, or any combination of these.

	repos Filters users based on the number of repositories they
have.

	location Filter users by the location indicated in their
profile.

	language Search for users that have repositories that match a
certain language.

	created Filter users based on when they joined.

	followers Filter users based on the number of followers they
have.

For more information about these qualifiers see: http://git.io/wjVYJw

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
tom repos:>42 followers:>1000

	sort (str) – (optional), how the results should be sorted;
options: followers, repositories, or joined; default:
best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/_V1zRwa for more information

	number (int) – (optional), number of search results to return;
Default: -1 returns all available

	etag (str) – (optional), ETag header value of the last request.

	Returns

	generator of UserSearchResult

	
github3.user(*args, **kwargs)

	Retrieve a User object for the specified user name.

	Parameters

	username (str) – name of the user

	Returns

	the user

	Return type

	User

	
github3.zen(*args, **kwargs)

	Return a quote from the Zen of GitHub. Yet another API Easter Egg.

Deprecated since version 1.2.0: Use github3.github.GitHub.zen() instead.

	Returns

	str

Enterprise Use

If you’re using github3.py to interact with an enterprise installation of
GitHub, you must use the GitHubEnterprise object.
Upon initialization, the only parameter you must supply is the URL of your
enterprise installation, e.g.

from github3 import GitHubEnterprise

g = GitHubEnterprise('https://github.examplesintl.com')
stats = g.admin_stats('all')
assert 'issues' in stats, ('Key issues is not included in the admin'
 'statistics')

App and Installation API Objects

This section of the documentation covers the representations of various
objects related to the Apps API [https://developer.github.com/v3/apps].

	
class github3.apps.App(json, session)

	An object representing a GitHub App.

New in version 1.2.0.

See also

	GitHub Apps [https://developer.github.com/apps/]

	Documentation for Apps on GitHub

	GitHub Apps API Documentation [https://developer.github.com/v3/apps/]

	API documentation of what’s available about an App.

This object has the following attributes:

	
created_at

	A datetime object representing the day and time
the App was created.

	
description

	The description of the App provided by the owner.

	
external_url

	The URL provided for the App by the owner.

	
html_url

	The HTML URL provided for the App by the owner.

	
id

	The unique identifier for the App. This is useful in cases where you
may want to authenticate either as an App or as a specific
installation of an App.

	
name

	The display name of the App that the user sees.

	
node_id

	A base64-encoded blob returned by the GitHub API for who knows what
reason.

	
owner

	A ShortUser object representing the GitHub
user who owns the App.

	
updated_at

	A datetime object representing the day and time
the App was last updated.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
class github3.apps.Installation(json, session)

	An installation of a GitHub App either on a User or Org.

New in version 1.2.0.

This has the following attributes:

	
access_tokens_url

	

	
account

	

	
app_id

	

	
created_at

	

	
events

	

	
html_url

	

	
id

	

	
permissions

	

	
repositories_url

	

	
repository_selection

	

	
single_file_name

	

	
target_id

	

	
target_type

	

	
updated_at

	

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Authorizations API Classes

This part of the documentation covers the
Authorization object.

	
class github3.auths.Authorization(json, session)

	Representation of an OAuth Authorization.

See also: https://developer.github.com/v3/oauth_authorizations/

This object has the following attributes:

	
app

	Details about the application the authorization was created for.

	
created_at

	A datetime representing when this authorization was
created.

	
fingerprint

	
New in version 1.0.

The optional parameter that is used to allow an OAuth application to
create multiple authorizations for the same user. This will help
distinguish two authorizations for the same app.

	
hashed_token

	
New in version 1.0.

This is the base64 of the SHA-256 digest of the token.

See also

	Removing Authorization Tokens [https://developer.github.com/changes/2014-12-08-removing-authorizations-token/#what-should-you-do]

	The blog post announcing the removal of token.

	
id

	The unique identifier for this authorization.

	
note_url

	The URL that points to a longer description about the purpose of this
autohrization.

	
note

	The short note provided when this authorization was created.

	
scopes

	The list of scopes assigned to this token.

See also

	Scopes for OAuth Applications [https://developer.github.com/apps/building-oauth-apps/scopes-for-oauth-apps/]

	GitHub’s documentation around available scopes and what they
mean

	
token

	If this authorization was created, this will contain the full token.
Otherwise, this attribute will be an empty string.

	
token_last_eight

	
New in version 1.0.

The last eight characters of the token. This allows users to identify
a token after the initial retrieval.

	
updated_at

	A datetime representing when this authorization was
most recently updated.

	
add_scopes(scopes, note=None, note_url=None)

	Add the scopes to this authorization.

New in version 1.0.

	Parameters

	
	scopes (list) – Adds these scopes to the ones present on this authorization

	note (str) – (optional), Note about the authorization

	note_url (str) – (optional), URL to link to when the user views the authorization

	Returns

	True if successful, False otherwise

	Return type

	bool

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this authorization.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_scopes(scopes, note=None, note_url=None)

	Remove the scopes from this authorization.

New in version 1.0.

	Parameters

	
	scopes (list) – Remove these scopes from the ones present on this authorization

	note (str) – (optional), Note about the authorization

	note_url (str) – (optional), URL to link to when the user views the authorization

	Returns

	True if successful, False otherwise

	Return type

	bool

	
replace_scopes(scopes, note=None, note_url=None)

	Replace the scopes on this authorization.

New in version 1.0.

	Parameters

	
	scopes (list) – Use these scopes instead of the previous list

	note (str) – (optional), Note about the authorization

	note_url (str) – (optional), URL to link to when the user views the authorization

	Returns

	True if successful, False otherwise

	Return type

	bool

Events API Classes

This part of the documentation covers the objects that represent data returned
by the Events API.

The Event Object

	
class github3.events.Event(json, session)

	Represents an event as returned by the API.

It structures and handles the data returned by via the
Events [https://developer.github.com/v3/activity/events] section
of the GitHub API.

Two events can be compared like so:

e1 == e2
e1 != e2

And that is equivalent to:

e1.id == e2.id
e1.id != e2.id

	
actor

	A EventUser that represents the user whose
action generated this event.

	
created_at

	A datetime representing when this event was created.

	
id

	The unique identifier for this event.

	
org

	If present, a EventOrganization representing
the organization on which this event occurred.

	
type

	The type of event this is.

See also

	Event Types Documentation [https://developer.github.com/v3/activity/events/types/]

	GitHub’s documentation of different event types

	
payload

	The payload of the event which has all of the details relevant to this
event.

	
repo

	The string representation of the repository this event pertains to.

Changed in version 1.0.0: This restores the behaviour of the API. To get a tuple,
representation, use self.repo.split('/', 1)

	
public

	A boolean representing whether the event is publicly viewable or not.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
static list_types()

	List available payload types.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

When accessing the payload of the event, you should notice that you receive a
dictionary where the keys depend on the event type [https://developer.github.com/v3/activity/events/types]. Note:

	where they reference an array in the documentation but index it like a
dictionary, you are given a regular dictionary

	where they reference a key as returning an object, you receive the equivalent
object from the dictionary, e.g., for a Fork Event

>>> event
<Event [Fork]>
>>> event.payload
{u'forkee': <Repository [eweap/redactor-js]>}
>>> event.payload['forkee']
<ShortRepository [eweap/redactor-js]>

Using the dictionary returned as the payload makes far more sense than creating
an object for the payload in this instance. For one, creating a class for each
payload type would be insanity. I did it once, but it isn’t worth the effort.
Having individual handlers as we have now which modify the payload to use our
objects when available is more sensible.

Event Related Objects

The following objects are returned as part of an
Event. These objects all have methods to convert them
to full representations of the object. For example,
EventUser has
to_user() and aliases
refresh() to behave similarly.

	
class github3.events.EventUser(json, session)

	The class that represents the user information returned in Events.

Note

Refreshing this object will return a User.

	
avatar_url

	The URL of the avatar image this user chose.

	
display_login

	The login that is displayed as part of the event.

	
gravatar_id

	The unique ID for the user’s gravatar, if they’re using gravatar to
host their avatar.

	
id

	The user’s unique ID in GitHub.

	
login

	The user’s login (or handle) on GitHub.

	
class github3.events.EventOrganization(json, session)

	Representation of the organization information returned in Events.

Note

Refreshing this object will return a
Organization.

This object has the following attributes:

	
avatar_url

	The URL to this organization’s avatar.

	
gravatar_id

	The unique identifier for this organization on Gravatar, if its
avatar is hosted there.

	
id

	This organization’s unique identifier on GitHub.

	
login

	The unique login for this organization.

	
class github3.events.EventPullRequest(json, session)

	Representation of a Pull Request returned in Events.

Note

Refreshing this object returns a PullRequest.

This object has the following attributes:

	
id

	The unique id of this pull request across all of GitHub.

	
number

	The number of this pull request on its repository.

	
state

	The state of this pull request during this event.

	
title

	The title of this pull request during this event.

	
locked

	A boolean attribute describing if this pull request was locked.

	
class github3.events.EventReviewComment(json, session)

	Representation of review comments in events.

Note

Refreshing this object will return a new
:class`~github3.pulls.ReviewComment`

This object has the following attributes:

	
id

	The unique id of this comment across all of GitHub.

	
author_association

	The association the author has with this project.

	
body

	The markdown body of this review comment.

	
commit_id

	The identifier of the commit that this comment was left on.

	
created_at

	A datetime object representing the date and time
this comment was created.

	
diff_hunk

	The section (or hunk) of the diff this comment was left on.

	
html_url

	The URL to view this comment in a browser.

	
links

	A dictionary of links to various items about this comment.

	
original_commit_id

	The identifier of original commit this comment was left on.

	
original_position

	The original position within the diff this comment was left.

	
path

	The path to the file this comment was left on.

	
position

	The current position within the diff this comment is placed.

	
pull_request_url

	The URL to retrieve the pull request informtation from the API.

	
updated_at

	A datetime object representing the date and time
this comment was updated.

	
user

	A ShortUser representing the user who authored
this comment.

	
class github3.events.EventIssue(json, session)

	The class that represents the issue information returned in Events.

	
class github3.events.EventIssueComment(json, session)

	Representation of a comment left on an issue.

See also: http://developer.github.com/v3/issues/comments/

This object has the following attributes:

	
author_association

	The association of the author (user) with the repository
this issue belongs to.

	
body

	The markdown formatted original text written by the author.

	
created_at

	A datetime object representing the date and time
when this comment was created.

	
html_url

	The URL to view this comment in a browser.

	
id

	The unique identifier for this comment.

	
issue_url

	The URL of the parent issue in the API.

	
updated_at

	A datetime object representing the date and time
when this comment was most recently updated.

	
user

	A ShortUser representing the author of this
comment.

Gist API Objects

The Gists API has a rich set of objects it returns.

Gist Representations

	
class github3.gists.gist.ShortGist(json, session)

	Short representation of a gist.

GitHub’s API returns different amounts of information about gists
based upon how that information is retrieved. This object exists to
represent the full amount of information returned for a specific
gist. For example, you would receive this class when calling
all_gists(). To provide a clear distinction
between the types of gists, github3.py uses different classes with
different sets of attributes.

This object only has the following attributes:

	
url

	The GitHub API URL for this repository, e.g.,
https://api.github.com/gists/6faaaeb956dec3f51a9bd630a3490291.

	
comments_count

	Number of comments on this gist

	
description

	Description of the gist as written by the creator

	
html_url

	The URL of this gist on GitHub, e.g.,
https://gist.github.com/sigmavirus24/6faaaeb956dec3f51a9bd630a3490291

	
id

	The unique identifier for this gist.

	
public

	This is a boolean attribute describing if the gist is public or
private

	
git_pull_url

	The git URL to pull this gist, e.g.,
git://gist.github.com/sigmavirus24/6faaaeb956dec3f51a9bd630a3490291.git

	
git_push_url

	The git URL to push to gist, e.g.,
git@gist.github.com/sigmavirus24/6faaaeb956dec3f51a9bd630a3490291.git

	
created_at

	This is a datetime object representing when the gist was created.

	
updated_at

	
This is a datetime object representing the last time this gist was

	
most recently updated.

	

	
owner

	This attribute is a ShortUser object
representing the creator of the gist.

	
files

	A dictionary mapping the filename to a
GistFile object.

Changed in version 1.0.0: Previously this was a list but it has been converted to a
dictionary to preserve the structure of the API.

	
comments_url

	The URL to retrieve the list of comments on the Gist via the API.

	
class github3.gists.gist.GistFork(json, session)

	This object represents a forked Gist.

This has a subset of attributes of a
ShortGist:

	
created_at

	The date and time when the gist was created.

	
id

	The unique identifier of the gist.

	
owner

	The user who forked the gist.

	
updated_at

	The date and time of the most recent modification of the fork.

	
url

	The API URL for the fork.

	
class github3.gists.gist.Gist(json, session)

	This object constitutes the full representation of a Gist.

GitHub’s API returns different amounts of information about gists
based upon how that information is retrieved. This object exists to
represent the full amount of information returned for a specific
gist. For example, you would receive this class when calling
gist(). To provide a clear distinction
between the types of gists, github3.py uses different classes with
different sets of attributes.

This object has all the same attributes as
ShortGist as well as:

	
commits_url

	The URL to retrieve gist commits from the GitHub API.

	
original_forks

	A list of GistFork objects representing
each fork of this gist. To retrieve the most recent list of forks, use
the forks() method.

	
forks_url

	The URL to retrieve the current listing of forks of this gist.

	
history

	A list of GistHistory objects
representing each change made to this gist.

	
truncated

	This is a boolean attribute that indicates whether the content of this
Gist has been truncated or not.

Files in a Gist

Gists have files which have two representations:

	
class github3.gists.file.GistFile(json, session)

	This represents the full file object returned by interacting with gists.

The object has all of the attributes as returned by the API for a
ShortGistFile as well as:

	
truncated

	A boolean attribute that indicates whether original_content
contains all of the file’s contents.

	
original_content

	The contents of the file (potentially truncated) returned by the API.
If the file was truncated use content() to retrieve it in its
entirety.

	
class github3.gists.file.ShortGistFile(json, session)

	This represents the file object returned by interacting with gists.

The object has the following attributes as returned by the API for a Gist:

	
raw_url

	This URL provides access to the complete, untruncated content of the
file represented by this object.

	
filename

	The string for the filename.

	
language

	The GitHub detected language for the file, e.g., Erlang, Python, text.

	
type

	The mime-type of the file. Related to language.

	
size

	The file size in bytes.

The History of a Gist

	
class github3.gists.history.GistHistory(json, session)

	This object represents one version (or revision) of a gist.

The GitHub API returns the following attributes:

	
url

	The URL to the revision of the gist retrievable through the API.

	
version

	The commit ID of the revision of the gist.

	
user

	The ShortUser representation of the user who
owns this gist.

	
committed_at

	The date and time of the revision’s commit.

	
change_status

	A dictionary with the number of deletions, additions, and total
changes to the gist.

For convenience, github3.py also exposes the following attributes from the
change_status:

	
additions

	The number of additions to the gist compared to the previous revision.

	
deletions

	The number of deletions from the gist compared to the previous
revision.

	
totoal

	The total number of changes to the gist compared to the previous
revision.

Git API Classes

This part of the documentation covers the module associated with the
Git Data [https://developer.github.com/v3/git/] section of the GitHub API.

Like much of the GitHub API, many objects have different representations.

Blob Object(s)

	
class github3.git.Blob(json, session)

	This object provides an interface to the API representation of a blob.

See also: http://developer.github.com/v3/git/blobs/

Changed in version 1.0.0: 	The content is no longer forcibly coerced to bytes.

	The decoded is deprecated in favor of decode_content().

This object has the following atributes

	
content

	The raw content of the blob. This may be base64 encoded text. Use
decode_content() to receive the non-encoded text.

	
encoding

	The encoding that GitHub reports for this blob’s content.

	
size

	The size of this blob’s content in bytes.

	
sha

	The SHA1 of this blob’s content.

Commit Object(s)

	
class github3.git.Commit(json, session)

	This represents a commit as returned by the git API.

This is distinct from RepoCommit.
Primarily this object represents the commit data stored by git and
it has no relationship to the repository on GitHub.

See also: http://developer.github.com/v3/git/commits/

This object has all of the attributes of a
ShortCommit as well as the following attributes:

	
parents

	The list of commits that are the parents of this commit. This may be
empty if this is the initial commit, or it may have several if it is
the result of an octopus merge. Each parent is represented as a
dictionary with the API URL and SHA1.

	
sha

	The unique SHA1 which identifies this commit.

	
verification

	The GPG verification data about this commit. See
https://developer.github.com/v3/git/commits/#commit-signature-verification
for more information.

	
class github3.git.ShortCommit(json, session)

	This represents a commit as returned by the git API.

This is distinct from RepoCommit.
Primarily this object represents the commit data stored by git. This
shorter representation of a Commit is most often found on a
RepoCommit to represent the git data
associated with it.

See also: http://developer.github.com/v3/git/commits/

This object has the following attributes:

	
author

	This is a dictionary with at least the name and email of the author
of this commit as well as the date it was authored.

	
committer

	This is a dictionary with at least the name and email of the committer
of this commit as well as the date it was committed.

	
message

	The commit message that describes the changes as written by the author
and committer.

	
tree

	The git tree object this commit points to.

Tree Object(s)

	
class github3.git.CommitTree(json, session)

	This object represents the abbreviated tree data in a commit.

The API returns different representations of different objects. When
representing a ShortCommit or
Commit, the API returns an abbreviated
representation of a git tree.

This object has the following attributes:

	
sha

	The SHA1 of this tree in the git repository.

	
class github3.git.Hash(json, session)

	This is used to represent the elements of a tree.

This provides the path to the object and the type of object it is. For
a brief explanation of what these types are and represent, this
StackOverflow question answers some of that:
https://stackoverflow.com/a/18605496/1953283

See also: http://developer.github.com/v3/git/trees/#create-a-tree

This object has the following attributes:

	
mode

	The mode of the file, directory, or link.

	
path

	The path to the file, directory, or link.

	
sha

	The SHA1 for this hash.

	
size

	This attribute is only not None if the type is not a tree.

	
type

	The type of git object this is representing, e.g., tree, blob, etc.

	
class github3.git.Tree(json, session)

	This represents a tree object from a git repository.

Trees tend to represent directories and subdirectories.

See also: http://developer.github.com/v3/git/trees/

This object has the following attributes:

	
sha

	The SHA1 of this tree in the git repository.

	
tree

	A list that represents the nodes in the tree. If this list has members
it will have instances of Hash.

Git Object, Reference, and Tag Object(s)

Yes, we know, GitObject is a funky name.

	
class github3.git.GitObject(json, session)

	This object represents an arbitrary ‘object’ in git.

This object is intended to be versatile and is usually found on one of the
following:

	Reference

	Tag

This object has the following attributes:

	
sha

	The SHA1 of the object this is representing.

	
type

	The name of the type of object this is representing.

	
class github3.git.Reference(json, session)

	Object representing a git reference associated with a repository.

This represents a reference (or ref) created on a repository via git.

See also: http://developer.github.com/v3/git/refs/

This object has the following attributes:

	
object

	A GitObject that this reference points to.

	
ref

	The string path to the reference, e.g., 'refs/heads/sc/feature-a'.

	
class github3.git.Tag(json, session)

	This represents an annotated tag.

Tags are a special kind of git reference and annotated tags have more
information than lightweight tags.

See also: http://developer.github.com/v3/git/tags/

This object has the following attributes:

	
message

	This is the message that was written to accompany the creation of the
annotated tag.

	
object

	A GitObject that represents the underlying git
object.

	
sha

	The SHA1 of this tag in the git repository.

	
tag

	The “lightweight” tag (or reference) that backs this annotated tag.

	
tagger

	The person who created this tag.

GitHub Object

The GitHub objects is the point at which most usage of github3.py works.

GitHub.com Object

	
class github3.github.GitHub(username=u'', password=u'', token=u'', session=None)

	Stores all the session information.

There are two ways to log into the GitHub API

from github3 import login
g = login(user, password)
g = login(token=token)
g = login(user, token=token)

or

from github3 import GitHub
g = GitHub(user, password)
g = GitHub(token=token)
g = GitHub(user, token=token)

This is simple backward compatibility since originally there was no way to
call the GitHub object with authentication parameters.

	
activate_membership(organization)

	Activate the membership to an organization.

	Parameters

	organization (Organization) – the organization or organization login for which to activate the
membership

	Returns

	the activated membership

	Return type

	Membership

	
add_email_addresses(addresses=[])

	Add the addresses to the authenticated user’s account.

	Parameters

	addresses (list) – (optional), email addresses to be added

	Returns

	list of email objects

	Return type

	[Email]

	
all_events(number=-1, etag=None)

	Iterate over public events.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events

	Return type

	Event

	
all_organizations(number=-1, since=None, etag=None, per_page=None)

	Iterate over every organization in the order they were created.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1, returns all of them

	since (int) – (optional), last organization id seen (allows restarting an
iteration)

	etag (str) – (optional), ETag from a previous request to the same endpoint

	per_page (int) – (optional), number of organizations to list per request

	Returns

	generator of organizations

	Return type

	ShortOrganization

	
all_repositories(number=-1, since=None, etag=None, per_page=None)

	Iterate over every repository in the order they were created.

	Parameters

	
	number (int) – (optional), number of repositories to return.
Default: -1, returns all of them

	since (int) – (optional), last repository id seen (allows restarting an
iteration)

	etag (str) – (optional), ETag from a previous request to the same endpoint

	per_page (int) – (optional), number of repositories to list per request

	Returns

	generator of repositories

	Return type

	ShortRepository

	
all_users(number=-1, etag=None, per_page=None, since=None)

	Iterate over every user in the order they signed up for GitHub.

Changed in version 1.0.0: Inserted the since parameter after the number parameter.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1, returns all of
them

	since (int) – (optional), ID of the last user that you’ve seen.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	per_page (int) – (optional), number of users to list per request

	Returns

	generator of users

	Return type

	ShortUser

	
app(app_slug)

	Retrieve information about a specific app using its “slug”.

New in version 1.2.0.

See also

	Get a single GitHub App [https://developer.github.com/v3/apps/#get-a-single-github-app]

	API Documentation

	Parameters

	app_slug – The identifier for the specific slug, e.g.,
test-github3-py-apps.

	Returns

	The app if and only if it is public.

	Return type

	App

	
app_installation(*args, **kwargs)

	Retrieve a specific App installation by its ID.

See also

	Get a single installation [https://developer.github.com/v3/apps/#get-a-single-installation]

	API Documentation

	Parameters

	installation_id (int) – The ID of the specific installation.

	Returns

	The installation.

	Return type

	Installation

	
app_installation_for_organization(*args, **kwargs)

	Retrieve an App installation for a specific organization.

New in version 1.2.0.

See also

	Find organization installation [https://developer.github.com/v3/apps/#find-organization-installation]

	API Documentation

	Parameters

	organization (str) – The name of the organization.

	Returns

	The installation

	Return type

	Installation

	
app_installation_for_repository(*args, **kwargs)

	Retrieve an App installation for a specific repository.

New in version 1.2.0.

See also

	Find repository installation [https://developer.github.com/v3/apps/#find-repository-installation]

	API Documentation

	Parameters

	
	owner (str) – The name of the owner.

	repostory (str) – The name of the repository.

	Returns

	The installation

	Return type

	Installation

	
app_installation_for_user(*args, **kwargs)

	Retrieve an App installation for a specific repository.

New in version 1.2.0.

See also

	Find user installation [https://developer.github.com/v3/apps/#find-user-installation]

	API Documentation

	Parameters

	user (str) – The name of the user.

	Returns

	The installation

	Return type

	Installation

	
app_installations(*args, **kwargs)

	Retrieve the list of installations for the authenticated app.

New in version 1.2.0.

See also

	Find installations [https://developer.github.com/v3/apps/#find-installations]

	API Documentation

	Returns

	The installations of the authenticated App.

	Return type

	Installation

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
authenticated_app(*args, **kwargs)

	Retrieve information about the current app.

New in version 1.2.0.

See also

	Get the authenticated GitHub App [https://developer.github.com/v3/apps/#get-the-authenticated-github-app]

	API Documentation

	Returns

	Metadata about the application

	Return type

	App

	
authorization(id_num)

	Get information about authorization id.

	Parameters

	id_num (int) – (required), unique id of the authorization

	Returns

	Authorization

	
authorizations(number=-1, etag=None)

	Iterate over authorizations for the authenticated user.

Note

This will return a 404 if you are using a token for
authentication.

	Parameters

	
	number (int) – (optional), number of authorizations to return.
Default: -1 returns all available authorizations

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of authorizations

	Return type

	Authorization

	
authorize(username, password, scopes=None, note=u'', note_url=u'', client_id=u'', client_secret=u'')

	Obtain an authorization token.

The retrieved token will allow future consumers to use the API without
a username and password.

	Parameters

	
	username (str) – (required)

	password (str) – (required)

	scopes (list) – (optional), areas you want this token to apply to, i.e., ‘gist’,
‘user’

	note (str) – (optional), note about the authorization

	note_url (str) – (optional), url for the application

	client_id (str) – (optional), 20 character OAuth client key for which to create a
token

	client_secret (str) – (optional), 40 character OAuth client secret for which to create
the token

	Returns

	created authorization

	Return type

	Authorization

	
check_authorization(access_token)

	Check an authorization created by a registered application.

OAuth applications can use this method to check token validity
without hitting normal rate limits because of failed login attempts.
If the token is valid, it will return True, otherwise it will return
False.

	Returns

	True if token is valid, False otherwise

	Return type

	bool

	
create_gist(description, files, public=True)

	Create a new gist.

Changed in version 1.1.0: Per GitHub’s recent announcement [https://blog.github.com/2018-02-18-deprecation-notice-removing-anonymous-gist-creation/] authentication is now required
for creating gists.

	Parameters

	
	description (str) – (required), description of gist

	files (dict) – (required), file names with associated dictionaries for content,
e.g. {'spam.txt': {'content': 'File contents ...'}}

	public (bool) – (optional), make the gist public if True

	Returns

	the created gist if successful, otherwise None

	Return type

	created gist

	Return type

	Gist

	
create_gpg_key(armored_public_key)

	Create a new GPG key.

New in version 1.2.0.

	Parameters

	armored_public_key (str) – (required), your GPG key, generated in ASCII-armored format

	Returns

	the created GPG key if successful, otherwise None

	Return type

	GPGKey

	
create_issue(owner, repository, title, body=None, assignee=None, milestone=None, labels=[], assignees=None)

	Create an issue on the repository.

Note

body, assignee, assignees, milestone, labels
are all optional.

Warning

This method retrieves the repository first and then uses it to
create an issue. If you’re making several issues, you should use
repository and then
use create_issue

	Parameters

	
	owner (str) – (required), login of the owner

	repository (str) – (required), repository name

	title (str) – (required), Title of issue to be created

	body (str) – (optional), The text of the issue, markdown formatted

	assignee (str) – (optional), Login of person to assign the issue to

	assignees – (optional), logins of the users to assign the issue to

	milestone (int) – (optional), id number of the milestone to attribute this issue to
(e.g. if m is a Milestone object,
m.number is what you pass here.)

	labels (list) – (optional), List of label names.

	Returns

	created issue

	Return type

	ShortIssue

	
create_key(title, key, read_only=False)

	Create a new key for the authenticated user.

	Parameters

	
	title (str) – (required), key title

	key (str) – (required), actual key contents, accepts path
as a string or file-like object

	read_only (bool) – (optional), restrict key access to read-only, default to False

	Returns

	created key

	Return type

	Key

	
create_repository(name, description=u'', homepage=u'', private=False, has_issues=True, has_wiki=True, auto_init=False, gitignore_template=u'')

	Create a repository for the authenticated user.

	Parameters

	
	name (str) – (required), name of the repository

	description (str) – (optional)

	homepage (str) – (optional)

	private (str) – (optional), If True, create a private repository. API default:
False

	has_issues (bool) – (optional), If True, enable issues for this repository. API
default: True

	has_wiki (bool) – (optional), If True, enable the wiki for this repository. API
default: True

	auto_init (bool) – (optional), auto initialize the repository

	gitignore_template (str) – (optional), name of the git template to use; ignored if auto_init =
False.

	Returns

	created repository

	Return type

	Repository

	
delete_email_addresses(addresses=[])

	Delete the specified addresses the authenticated user’s account.

	Parameters

	addresses (list) – (optional), email addresses to be removed

	Returns

	True if successful, False otherwise

	Return type

	bool

	
emails(number=-1, etag=None)

	Iterate over email addresses for the authenticated user.

	Parameters

	
	number (int) – (optional), number of email addresses to return.
Default: -1 returns all available email addresses

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of emails

	Return type

	Email

	
emojis()

	Retrieve a dictionary of all of the emojis that GitHub supports.

	Returns

	dictionary where the key is what would be in between the
colons and the value is the URL to the image, e.g.,

{
 '+1': 'https://github.global.ssl.fastly.net/images/...',
 # ...
}

	
feeds()

	List GitHub’s timeline resources in Atom format.

	Returns

	dictionary parsed to include URITemplates

	Return type

	dict

	
follow(username)

	Make the authenticated user follow the provided username.

	Parameters

	username (str) – (required), user to follow

	Returns

	True if successful, False otherwise

	Return type

	bool

	
followed_by(username, number=-1, etag=None)

	Iterate over users being followed by username.

New in version 1.0.0: This replaces iter_following(‘sigmavirus24’).

	Parameters

	
	username (str) – (required), login of the user to check

	number (int) – (optional), number of people to return. Default: -1 returns all
people you follow

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
followers(number=-1, etag=None)

	Iterate over followers of the authenticated user.

New in version 1.0.0: This replaces iter_followers().

	Parameters

	
	number (int) – (optional), number of followers to return. Default: -1 returns all
followers

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of followers

	Return type

	ShortUser

	
followers_of(username, number=-1, etag=None)

	Iterate over followers of username.

New in version 1.0.0: This replaces iter_followers(‘sigmavirus24’).

	Parameters

	
	username (str) – (required), login of the user to check

	number (int) – (optional), number of followers to return. Default: -1 returns all
followers

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of followers

	Return type

	ShortUser

	
following(number=-1, etag=None)

	Iterate over users the authenticated user is following.

New in version 1.0.0: This replaces iter_following().

	Parameters

	
	number (int) – (optional), number of people to return. Default: -1 returns all
people you follow

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gist(id_num)

	Retrieve the gist using the specified id number.

	Parameters

	id_num (int) – (required), unique id of the gist

	Returns

	the gist identified by id_num

	Return type

	Gist

	
gists(number=-1, etag=None)

	Retrieve the authenticated user’s gists.

New in version 1.0.

	Parameters

	
	number (int) – (optional), number of gists to return. Default: -1, returns all
available gists

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of short gists

	Return type

	:class:~github3.gists.ShortGist`

	
gists_by(username, number=-1, etag=None)

	Iterate over the gists owned by a user.

New in version 1.0.

	Parameters

	
	username (str) – login of the user who owns the gists

	number (int) – (optional), number of gists to return. Default: -1 returns all
available gists

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of short gists owned by the specified user

	Return type

	ShortGist

	
gitignore_template(language)

	Return the template for language.

	Returns

	the template string

	Return type

	str

	
gitignore_templates()

	Return the list of available templates.

	Returns

	list of template names

	Return type

	[str]

	
gpg_key(id_num)

	Retrieve the GPG key of the authenticated user specified by id_num.

New in version 1.2.0.

	Returns

	the GPG key specified by id_num

	Return type

	GPGKey

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of the authenticated user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of the GPG keys belonging to the authenticated user

	Return type

	GPGKey

	
is_following(username)

	Check if the authenticated user is following login.

	Parameters

	username (str) – (required), login of the user to check if the
authenticated user is checking

	Returns

	True if following, False otherwise

	Return type

	bool

	
is_starred(username, repo)

	Check if the authenticated user starred username/repo.

	Parameters

	
	username (str) – (required), owner of repository

	repo (str) – (required), name of repository

	Returns

	True if starred, False otherwise

	Return type

	bool

	
issue(username, repository, number)

	Fetch issue from owner/repository.

	Parameters

	
	username (str) – (required), owner of the repository

	repository (str) – (required), name of the repository

	number (int) – (required), issue number

	Returns

	the issue

	Return type

	Issue

	
issues(filter=u'', state=u'', labels=u'', sort=u'', direction=u'', since=None, number=-1, etag=None)

	List all of the authenticated user’s (and organization’s) issues.

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	filter (str) – accepted values:
(‘assigned’, ‘created’, ‘mentioned’, ‘subscribed’)
api-default: ‘assigned’

	state (str) – accepted values: (‘all’, ‘open’, ‘closed’)
api-default: ‘open’

	labels (str) – comma-separated list of label names, e.g., ‘bug,ui,@high’

	sort (str) – accepted values: (‘created’, ‘updated’, ‘comments’)
api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’)
api-default: desc

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), number of issues to return.
Default: -1 returns all issues

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
issues_on(username, repository, milestone=None, state=None, assignee=None, mentioned=None, labels=None, sort=None, direction=None, since=None, number=-1, etag=None)

	List issues on owner/repository.

Only owner and repository are required.

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	username (str) – login of the owner of the repository

	repository (str) – name of the repository

	milestone (int) – None, ‘*’, or ID of milestone

	state (str) – accepted values: (‘all’, ‘open’, ‘closed’)
api-default: ‘open’

	assignee (str) – ‘*’ or login of the user

	mentioned (str) – login of the user

	labels (str) – comma-separated list of label names, e.g., ‘bug,ui,@high’

	sort (str) – accepted values: (‘created’, ‘updated’, ‘comments’)
api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’)
api-default: desc

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), number of issues to return.
Default: -1 returns all issues

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
key(id_num)

	Get the authenticated user’s key specified by id_num.

	Parameters

	id_num (int) – (required), unique id of the key

	Returns

	created key

	Return type

	Key

	
keys(number=-1, etag=None)

	Iterate over public keys for the authenticated user.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all your keys

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of keys

	Return type

	Key

	
license(name)

	Retrieve the license specified by the name.

	Parameters

	name (string) – (required), name of license

	Returns

	the specified license

	Return type

	License

	
licenses(number=-1, etag=None)

	Iterate over open source licenses.

	Returns

	generator of short license objects

	Return type

	ShortLicense

	
login(username=None, password=None, token=None, two_factor_callback=None)

	Log the user into GitHub for protected API calls.

	Parameters

	
	username (str) – login name

	password (str) – password for the login

	token (str) – OAuth token

	two_factor_callback (func) – (optional), function you implement to provide the Two-factor
Authentication code to GitHub when necessary

	
login_as_app(private_key_pem, app_id, expire_in=600)

	Login as a GitHub Application.

New in version 1.2.0.

See also

	Authenticating as an App [https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-a-github-app]

	GitHub’s documentation of authenticating as an application.

	Parameters

	
	private_key_pem (bytes) – The bytes of the private key for this GitHub Application.

	app_id (int) – The integer identifier for this GitHub Application.

	expire_in (int) – The length in seconds for this token to be valid for.
Default: 600 seconds (10 minutes)

	
login_as_app_installation(private_key_pem, app_id, installation_id)

	Login using your GitHub App’s installation credentials.

New in version 1.2.0.

See also

	Authenticating as an Installation [https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-an-installation]

	GitHub’s documentation of authenticating as an installation.

	Create a new installation token [https://developer.github.com/v3/apps/#create-a-new-installation-token]

	API Documentation

Note

This method makes an API call to retrieve the token.

Warning

This method expires after 1 hour.

	Parameters

	
	private_key_pem (bytes) – The bytes of the private key for this GitHub Application.

	app_id (int) – The integer identifier for this GitHub Application.

	installation_id (int) – The integer identifier of your App’s installation.

	
markdown(text, mode=u'', context=u'', raw=False)

	Render an arbitrary markdown document.

	Parameters

	
	text (str) – (required), the text of the document to render

	mode (str) – (optional), ‘markdown’ or ‘gfm’

	context (str) – (optional), only important when using mode ‘gfm’, this is the
repository to use as the context for the rendering

	raw (bool) – (optional), renders a document like a README.md, no gfm, no context

	Returns

	the HTML formatted markdown text

	Return type

	str (or unicode on Python 2)

	
me()

	Retrieve the info for the authenticated user.

New in version 1.0: This was separated from the user method.

	Returns

	the representation of the authenticated user.

	Return type

	AuthenticatedUser

	
membership_in(organization)

	Retrieve the user’s membership in the specified organization.

	Parameters

	organization (Organization) – the organization or organization login to retrieve the authorized
user’s membership in

	Returns

	the user’s membership

	Return type

	Membership

	
meta()

	Retrieve a dictionary with arrays of addresses in CIDR format.

The addresses in CIDR format specify the addresses that the incoming
service hooks will originate from.

New in version 0.5.

	Returns

	CIDR addresses

	Return type

	dict

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
notifications(all=False, participating=False, number=-1, etag=None)

	Iterate over the user’s notification.

	Parameters

	
	all (bool) – (optional), iterate over all notifications

	participating (bool) – (optional), only iterate over notifications in which the user is
participating

	number (int) – (optional), how many notifications to return

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of threads

	Return type

	Thread

	
octocat(say=None)

	Return an easter egg of the API.

	Params str say

	(optional), pass in what you’d like Octocat to say

	Returns

	ascii art of Octocat

	Return type

	str (or unicode on Python 2)

	
organization(username)

	Return an Organization object for the login name.

	Parameters

	username (str) – (required), login name of the org

	Returns

	the organization

	Return type

	Organization

	
organization_issues(name, filter=u'', state=u'', labels=u'', sort=u'', direction=u'', since=None, number=-1, etag=None)

	Iterate over the organization’s issues.

Note

This only works if the authenticated user belongs to it.

	Parameters

	
	name (str) – (required), name of the organization

	filter (str) – accepted values:
(‘assigned’, ‘created’, ‘mentioned’, ‘subscribed’)
api-default: ‘assigned’

	state (str) – accepted values: (‘open’, ‘closed’)
api-default: ‘open’

	labels (str) – comma-separated list of label names, e.g.,
‘bug,ui,@high’

	sort (str) – accepted values: (‘created’, ‘updated’, ‘comments’)
api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’)
api-default: desc

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), number of issues to return. Default:
-1, returns all available issues

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
organization_memberships(state=None, number=-1, etag=None)

	List organizations of which the user is a current or pending member.

	Parameters

	state (str) – (option), state of the membership, i.e., active, pending

	Returns

	iterator of memberships

	Return type

	Membership

	
organizations(number=-1, etag=None)

	Iterate over all organizations the authenticated user belongs to.

This will display both the private memberships and the publicized
memberships.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organizations

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of organizations

	Return type

	ShortOrganization

	
organizations_with(username, number=-1, etag=None)

	Iterate over organizations with username as a public member.

New in version 1.0.0: Replaces iter_orgs('sigmavirus24').

	Parameters

	
	username (str) – (optional), user whose orgs you wish to list

	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organizations

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of organizations

	Return type

	ShortOrganization

	
project(number)

	Return the Project with id number.

	Parameters

	number (int) – id of the project

	Returns

	the project

	Return type

	Project

	
project_card(number)

	Return the ProjectCard with id number.

	Parameters

	number (int) – id of the project card

	Returns

	ProjectCard

	
project_column(number)

	Return the ProjectColumn with id number.

	Parameters

	number (int) – id of the project column

	Returns

	ProjectColumn

	
public_gists(number=-1, etag=None, since=None)

	Retrieve all public gists and iterate over them.

New in version 1.0.

	Parameters

	
	number (int) – (optional), number of gists to return. Default: -1
returns all available gists

	etag (str) – (optional), ETag from a previous request to the same endpoint

	since (datetime or str) – (optional), filters out any gists updated before the
given time. This can be a datetime or an ISO8601
formatted date string, e.g., 2012-05-20T23:10:27Z

	Returns

	generator of short gists

	Return type

	ShortGist

	
pubsubhubbub(mode, topic, callback, secret=u'')

	Create or update a pubsubhubbub hook.

	Parameters

	
	mode (str) – (required), accepted values: (‘subscribe’, ‘unsubscribe’)

	topic (str) – (required), form: https://github.com/:user/:repo/events/:event

	callback (str) – (required), the URI that receives the updates

	secret (str) – (optional), shared secret key that generates a
SHA1 HMAC of the payload content.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
pull_request(owner, repository, number)

	Fetch pull_request #:number: from :owner:/:repository.

	Parameters

	
	owner (str) – (required), owner of the repository

	repository (str) – (required), name of the repository

	number (int) – (required), issue number

	Returns

	PullRequest

	
rate_limit()

	Return a dictionary with information from /rate_limit.

The dictionary has two keys: resources and rate. In
resources you can access information about core or search.

Note: the rate key will be deprecated before version 3 of the
GitHub API is finalized. Do not rely on that key. Instead, make your
code future-proof by using core in resources, e.g.,

rates = g.rate_limit()
rates['resources']['core'] # => your normal ratelimit info
rates['resources']['search'] # => your search ratelimit info

New in version 0.8.

	Returns

	ratelimit mapping

	Return type

	dict

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
repositories(type=None, sort=None, direction=None, number=-1, etag=None)

	List repositories for the authenticated user, filterable by type.

Changed in version 0.6: Removed the login parameter for correctness. Use repositories_by
instead

	Parameters

	
	type (str) – (optional), accepted values:
(‘all’, ‘owner’, ‘public’, ‘private’, ‘member’)
API default: ‘all’

	sort (str) – (optional), accepted values:
(‘created’, ‘updated’, ‘pushed’, ‘full_name’)
API default: ‘created’

	direction (str) – (optional), accepted values:
(‘asc’, ‘desc’), API default: ‘asc’ when using ‘full_name’,
‘desc’ otherwise

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories

	Return type

	ShortRepository

	
repositories_by(username, type=None, sort=None, direction=None, number=-1, etag=None)

	List public repositories for the specified username.

New in version 0.6.

	Parameters

	
	username (str) – (required), username

	type (str) – (optional), accepted values: (‘all’, ‘owner’, ‘member’)
API default: ‘all’

	sort (str) – (optional), accepted values:
(‘created’, ‘updated’, ‘pushed’, ‘full_name’)
API default: ‘created’

	direction (str) – (optional), accepted values:
(‘asc’, ‘desc’), API default: ‘asc’ when using ‘full_name’,
‘desc’ otherwise

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories

	Return type

	ShortRepository

	
repository(owner, repository)

	Retrieve the desired repository.

	Parameters

	
	owner (str) – (required)

	repository (str) – (required)

	Returns

	the repository

	Return type

	Repository

	
repository_invitations(number=-1, etag=None)

	Iterate over the repository invitations for the current user.

	Parameters

	
	number (int) – (optional), number of invitations to return. Default: -1 returns
all available invitations

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repository invitation objects

	Return type

	Invitation

	
repository_with_id(number)

	Retrieve the repository with the globally unique id.

	Parameters

	number (int) – id of the repository

	Returns

	the repository

	Return type

	Repository

	
revoke_authorization(*args, **kwargs)

	Revoke specified authorization for an OAuth application.

Revoke all authorization tokens created by your application. This will
only work if you have already called set_client_id.

	Parameters

	access_token (str) – (required), the access_token to revoke

	Returns

	True if successful, False otherwise

	Return type

	bool

	
revoke_authorizations(*args, **kwargs)

	Revoke all authorizations for an OAuth application.

Revoke all authorization tokens created by your application. This will
only work if you have already called set_client_id.

	Parameters

	client_id (str) – (required), the client_id of your application

	Returns

	True if successful, False otherwise

	Return type

	bool

	
search_code(query, sort=None, order=None, per_page=None, text_match=False, number=-1, etag=None)

	Find code via the code search API.

The query can contain any combination of the following supported
qualifiers:

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the file contents, the file path, or
both.

	language Searches code based on the language it’s written in.

	fork Specifies that code from forked repositories should be
searched. Repository forks will not be searchable unless the fork
has more stars than the parent repository.

	size Finds files that match a certain size (in bytes).

	path Specifies the path that the resulting file must be at.

	extension Matches files with a certain extension.

	user or repo Limits searches to a specific user or
repository.

For more information about these qualifiers, see: http://git.io/-DvAuA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
addClass in:file language:js repo:jquery/jquery

	sort (str) – (optional), how the results should be sorted;
option(s): indexed; default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/iRmJxg for more information

	number (int) – (optional), number of repositories to return.
Default: -1, returns all available repositories

	etag (str) – (optional), previous ETag header value

	Returns

	generator of code search results

	Return type

	CodeSearchResult

	
search_commits(query, sort=None, order=None, per_page=None, text_match=False, number=-1, etag=None)

	Find commits via the commits search API.

The query can contain any combination of the following supported
qualifiers:

	author Matches commits authored by the given username.
Example: author:defunkt.

	committer Matches commits committed by the given username.
Example: committer:defunkt.

	author-name Matches commits authored by a user with the given
name. Example: author-name:wanstrath.

	committer-name Matches commits committed by a user with the given
name. Example: committer-name:wanstrath.

	author-email Matches commits authored by a user with the given
email. Example: author-email:chris@github.com.

	committer-email Matches commits committed by a user with the
given email. Example: committer-email:chris@github.com.

	author-date Matches commits authored within the specified date
range. Example: author-date:<2016-01-01.

	committer-date Matches commits committed within the specified
date range. Example: committer-date:>2016-01-01.

	merge Matches merge commits when set to to true, excludes
them when set to false.

	hash Matches commits with the specified hash. Example:
hash:124a9a0ee1d8f1e15e833aff432fbb3b02632105.

	parent Matches commits whose parent has the specified hash.
Example: parent:124a9a0ee1d8f1e15e833aff432fbb3b02632105.

	tree Matches commits with the specified tree hash. Example:
tree:99ca967.

	is Matches public repositories when set to public, private
repositories when set to private.

	user or org or repo Limits the search to a specific user,
organization, or repository.

For more information about these qualifiers, see: https://git.io/vb7XQ

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
css repo:octocat/Spoon-Knife

	sort (str) – (optional), how the results should be sorted;
options: author-date, committer-date;
default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	number (int) – (optional), number of commits to return.
Default: -1, returns all available commits

	etag (str) – (optional), previous ETag header value

	Returns

	generator of commit search results

	Return type

	CommitSearchResult

	
search_issues(query, sort=None, order=None, per_page=None, text_match=False, number=-1, etag=None)

	Find issues by state and keyword.

The query can contain any combination of the following supported
qualifers:

	type With this qualifier you can restrict the search to issues
or pull request only.

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the title, body, comments, or any
combination of these.

	author Finds issues created by a certain user.

	assignee Finds issues that are assigned to a certain user.

	mentions Finds issues that mention a certain user.

	commenter Finds issues that a certain user commented on.

	involves Finds issues that were either created by a certain user,
assigned to that user, mention that user, or were commented on by
that user.

	state Filter issues based on whether they’re open or closed.

	labels Filters issues based on their labels.

	language Searches for issues within repositories that match a
certain language.

	created or updated Filters issues based on times of creation,
or when they were last updated.

	comments Filters issues based on the quantity of comments.

	user or repo Limits searches to a specific user or
repository.

For more information about these qualifiers, see: http://git.io/d1oELA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
windows label:bug

	sort (str) – (optional), how the results should be sorted;
options: created, comments, updated;
default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search terms.
See http://git.io/QLQuSQ for more information

	number (int) – (optional), number of issues to return.
Default: -1, returns all available issues

	etag (str) – (optional), previous ETag header value

	Returns

	generator of issue search results

	Return type

	IssueSearchResult

	
search_repositories(query, sort=None, order=None, per_page=None, text_match=False, number=-1, etag=None)

	Find repositories via various criteria.

The query can contain any combination of the following supported
qualifers:

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the repository name, description,
readme, or any combination of these.

	size Finds repositories that match a certain size (in
kilobytes).

	forks Filters repositories based on the number of forks, and/or
whether forked repositories should be included in the results at
all.

	created or pushed Filters repositories based on times of
creation, or when they were last updated. Format: YYYY-MM-DD.
Examples: created:<2011, pushed:<2013-02,
pushed:>=2013-03-06

	user or repo Limits searches to a specific user or
repository.

	language Searches repositories based on the language they’re
written in.

	stars Searches repositories based on the number of stars.

For more information about these qualifiers, see: http://git.io/4Z8AkA

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
tetris language:assembly

	sort (str) – (optional), how the results should be sorted;
options: stars, forks, updated; default: best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/4ct1eQ for more information

	number (int) – (optional), number of repositories to return.
Default: -1, returns all available repositories

	etag (str) – (optional), previous ETag header value

	Returns

	generator of repository search results

	Return type

	RepositorySearchResult

	
search_users(query, sort=None, order=None, per_page=None, text_match=False, number=-1, etag=None)

	Find users via the Search API.

The query can contain any combination of the following supported
qualifers:

	type With this qualifier you can restrict the search to just
personal accounts or just organization accounts.

	in Qualifies which fields are searched. With this qualifier you
can restrict the search to just the username, public email, full
name, or any combination of these.

	repos Filters users based on the number of repositories they
have.

	location Filter users by the location indicated in their
profile.

	language Search for users that have repositories that match a
certain language.

	created Filter users based on when they joined.

	followers Filter users based on the number of followers they
have.

For more information about these qualifiers see: http://git.io/wjVYJw

	Parameters

	
	query (str) – (required), a valid query as described above, e.g.,
tom repos:>42 followers:>1000

	sort (str) – (optional), how the results should be sorted;
options: followers, repositories, or joined; default:
best match

	order (str) – (optional), the direction of the sorted results,
options: asc, desc; default: desc

	per_page (int) – (optional)

	text_match (bool) – (optional), if True, return matching search
terms. See http://git.io/_V1zRwa for more information

	number (int) – (optional), number of search results to return;
Default: -1 returns all available

	etag (str) – (optional), ETag header value of the last request.

	Returns

	generator of user search results

	Return type

	UserSearchResult

	
set_client_id(id, secret)

	Allow the developer to set their OAuth application credentials.

	Parameters

	
	id (str) – 20-character hexidecimal client_id provided by GitHub

	secret (str) – 40-character hexidecimal client_secret provided by GitHub

	
set_user_agent(user_agent)

	Allow the user to set their own user agent string.

	Parameters

	user_agent (str) – string used to identify your application.
Library default: “github3.py/{version}”, e.g., “github3.py/1.0.0”

	
star(username, repo)

	Star a repository.

	Parameters

	
	username (str) – (required), owner of the repo

	repo (str) – (required), name of the repo

	Returns

	True if successful, False otherwise

	Return type

	bool

	
starred(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by the authenticated user.

Changed in version 1.0.0: This was split from iter_starred and requires authentication.

	Parameters

	
	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default: ‘desc’

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories

	Return type

	ShortRepository>

	
starred_by(username, sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by username.

New in version 1.0: This was split from iter_starred and requires the login
parameter.

	Parameters

	
	username (str) – name of user whose stars you want to see

	sort (str) – (optional), either ‘created’ (when the star was created) or
‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default: ‘desc’

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories

	Return type

	ShortRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by the authenticated user.

	Parameters

	
	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories

	Return type

	ShortRepository

	
subscriptions_for(username, number=-1, etag=None)

	Iterate over repositories subscribed to by username.

	Parameters

	
	username (str) – name of user whose subscriptions you want to see

	number (int) – (optional), number of repositories to return.
Default: -1 returns all repositories

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of subscribed repositories

	Return type

	ShortRepository

	
unfollow(username)

	Make the authenticated user stop following username.

	Parameters

	username (str) – (required)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
unstar(username, repo)

	Unstar username/repo.

	Parameters

	
	username (str) – (required), owner of the repo

	repo (str) – (required), name of the repo

	Returns

	True if successful, False otherwise

	Return type

	bool

	
update_me(name=None, email=None, blog=None, company=None, location=None, hireable=False, bio=None)

	Update the profile of the authenticated user.

	Parameters

	
	name (str) – e.g., ‘John Smith’, not login name

	email (str) – e.g., ‘john.smith@example.com’

	blog (str) – e.g., ‘http://www.example.com/jsmith/blog’

	company (str) –

	location (str) –

	hireable (bool) – defaults to False

	bio (str) – GitHub flavored markdown

	Returns

	True if successful, False otherwise

	Return type

	bool

	
user(username)

	Retrieve a User object for the specified user name.

	Parameters

	username (str) – name of the user

	Returns

	the user

	Return type

	User

	
user_issues(filter=u'', state=u'', labels=u'', sort=u'', direction=u'', since=None, per_page=None, number=-1, etag=None)

	List only the authenticated user’s issues.

Will not list organization’s issues. See organization_issues().

Changed in version 1.0: per_page parameter added before number

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	filter (str) – accepted values:
(‘assigned’, ‘created’, ‘mentioned’, ‘subscribed’)
api-default: ‘assigned’

	state (str) – accepted values: (‘all’, ‘open’, ‘closed’)
api-default: ‘open’

	labels (str) – comma-separated list of label names, e.g.,
‘bug,ui,@high’

	sort (str) – accepted values: (‘created’, ‘updated’, ‘comments’)
api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’)
api-default: desc

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), number of issues to return.
Default: -1 returns all issues

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
user_teams(number=-1, etag=None)

	Get the authenticated user’s teams across all of organizations.

List all of the teams across all of the organizations to which the
authenticated user belongs. This method requires user or repo scope
when authenticating via OAuth.

	Returns

	generator of teams

	Return type

	ShortTeam

	
user_with_id(number)

	Get the user’s information with id number.

	Parameters

	number (int) – the user’s id number

	Returns

	the user

	Return type

	User

	
zen()

	Return a quote from the Zen of GitHub.

Yet another API Easter Egg

	Returns

	the zen of GitHub

	Return type

	str (on Python 3, unicode on Python 2)

Examples

There are some examples of how to get started with this object
here.

GitHubEnterprise Object

This has all of the same attributes as the GitHub
object so for brevity’s sake, I’m not listing all of it’s inherited members.

	
class github3.github.GitHubEnterprise(url, username=u'', password=u'', token=u'', verify=True, session=None)

	An interface to a specific GitHubEnterprise instance.

For GitHub Enterprise users, this object will act as the public API to
your instance. You must provide the URL to your instance upon
initialization and can provide the rest of the login details just like in
the GitHub object.

There is no need to provide the end of the url (e.g., /api/v3/), that will
be taken care of by us.

If you have a self signed SSL for your local github enterprise you can
override the validation by passing verify=False.

	
admin_stats(option)

	Retrieve statistics about this GitHub Enterprise instance.

	Parameters

	option (str) – (required), accepted values: (‘all’, ‘repos’,
‘hooks’, ‘pages’, ‘orgs’, ‘users’, ‘pulls’, ‘issues’,
‘milestones’, ‘gists’, ‘comments’)

	Returns

	the statistics

	Return type

	dict

	
create_user(login, email)

	Create a new user.

Note

This is only available for administrators of the instance.

	Parameters

	
	login (str) – (required), The user’s username.

	email (str) – (required), The user’s email address.

	Returns

	created user

	Return type

	ShortUser

GitHubStatus Object

	
class github3.github.GitHubStatus(session=None)

	A sleek interface to the GitHub System Status API.

This will only ever return the JSON objects returned by the API.

	
api()

	Retrieve API status.

	
last_message()

	Retrieve the last message.

	
messages()

	Retrieve all messages.

	
status()

	Retrieve overall status.

GitHubSession Object

	
class github3.session.GitHubSession(default_connect_timeout=4, default_read_timeout=1)

	Our slightly specialized Session object.

Normally this is created automatically by
GitHub. To use alternate values for
network timeouts, this class can be instantiated directly and
passed to the GitHub object. For example:

gh = github.GitHub(session=session.GitHubSession(
 default_connect_timeout=T, default_read_timeout=N))

	Parameters

	
	default_connect_timeout (float) – the number of seconds to wait when establishing a connection to
GitHub

	default_read_timeout (float) – the number of seconds to wait for a response from GitHub

Issues API Objects

The following objects represent data returned by the Issues API [https://developer.github.com/v3/issues/]

Issues

	
class github3.issues.issue.ShortIssue(json, session)

	Object for the shortened representation of an Issue.

GitHub’s API returns different amounts of information about issues based
upon how that information is retrieved. Often times, when iterating over
several issues, GitHub will return less information. To provide a clear
distinction between the types of issues, github3.py uses different classes
with different sets of attributes.

New in version 1.0.0.

This object has the following attributes:

	
assignee

	
Deprecated since version 1.0.0: While the API still returns this attribute, it’s not as useful in
the context of multiple assignees.

If a user is assigned to this issue, then it will be represented as a
ShortUser.

	
assignees

	If users are assigned to this issue, then they will be represented as
a list of ShortUser.

	
body

	The markdown formatted text of the issue as writen by the user who
opened the issue.

	
closed_at

	If this issue is closed, this will be a datetime
object representing the date and time this issue was closed. Otherwise
it will be None.

	
comments_count

	The number of comments on this issue.

	
comments_url

	The URL to retrieve the comments on this issue from the API.

	
created_at

	A datetime object representing the date and time
this issue was created.

	
events_url

	The URL to retrieve the events related to this issue from the API.

	
html_url

	The URL to view this issue in a browser.

	
id

	The unique identifier for this issue in GitHub.

	
labels_urlt

	A URITemplate object that can expand to a URL to
retrieve the labels on this issue from the API.

	
locked

	A boolean attribute representing whether or not this issue is locked.

	
milestone

	A Milestone object representing the
milestone to which this issue was assigned.

	
number

	The number identifying this issue on its parent repository.

	
original_labels

	If any are assigned to this issue, the list of
ShortLabel objects representing the
labels returned by the API for this issue.

	
pull_request_urls

	If present, a dictionary of URLs for retrieving information about the
associated pull request for this issue.

	
state

	The current state of this issue, e.g., 'closed' or 'open'.

	
title

	The title for this issue.

	
updated_at

	A datetime object representing the date and time
when this issue was last updated.

	
user

	A ShortUser representing the user who opened
this issue.

	
add_assignees(users)

	Assign users to this issue.

This is a shortcut for edit().

	Parameters

	users (list of str) – users or usernames to assign this issue to

	Returns

	True if successful, False otherwise

	Return type

	bool

	
add_labels(*args)

	Add labels to this issue.

	Parameters

	args (str) – (required), names of the labels you wish to add

	Returns

	list of labels

	Return type

	ShortLabel

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
assign(username)

	Assign user username to this issue.

Deprecated since version 1.2.0: Use github3.issues.issue.Issue.add_assignees() instead.

This is a short cut for edit().

	Parameters

	username (str) – username of the person to assign this issue to

	Returns

	True if successful, False, otherwise

	Return type

	bool

	
close()

	Close this issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
comment(id_num)

	Get a single comment by its id.

The catch here is that id is NOT a simple number to obtain. If
you were to look at the comments on issue #15 in
sigmavirus24/Todo.txt-python, the first comment’s id is 4150787.

	Parameters

	id_num (int) – (required), comment id, see example above

	Returns

	the comment identified by id_num

	Return type

	IssueComment

	
comments(number=-1, sort=u'', direction=u'', since=None)

	Iterate over the comments on this issue.

	Parameters

	
	number (int) – (optional), number of comments to iterate over
Default: -1 returns all comments

	sort (str) – accepted valuees: (‘created’, ‘updated’) api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’) Ignored without the sort parameter

	since (datetime or string) – (optional), Only issues after this date will be returned. This can
be a datetime or an ISO8601 formatted date string, e.g.,
2012-05-20T23:10:27Z

	Returns

	iterator of comments

	Return type

	IssueComment

	
create_comment(body)

	Create a comment on this issue.

	Parameters

	body (str) – (required), comment body

	Returns

	the created comment

	Return type

	IssueComment

	
edit(title=None, body=None, assignee=None, state=None, milestone=None, labels=None, assignees=None)

	Edit this issue.

	Parameters

	
	title (str) – title of the issue

	body (str) – markdown formatted body (description) of the issue

	assignee (str) – login name of user the issue should be assigned to

	state (str) – accepted values: (‘open’, ‘closed’)

	milestone (int) – the number (not title) of the milestone to assign this to,
or 0 to remove the milestone

Note

This is not the milestone’s globally unique identifier, it’s
value in number.

	labels (list) – list of labels to apply this to

	assignees (list of strings) – (optional), login of the users to assign the issue to

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1)

	Iterate over events associated with this issue only.

	Parameters

	number (int) – (optional), number of events to return. Default: -1 returns all
events available.

	Returns

	generator of events on this issues

	Return type

	IssueEvent

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
is_closed()

	Check if the issue is closed.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
labels(number=-1, etag=None)

	Iterate over the labels associated with this issue.

	Parameters

	
	number (int) – (optional), number of labels to return. Default: -1 returns all
labels applied to this issue.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of labels on this issue

	Return type

	ShortLabel

	
lock()

	Lock an issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
pull_request()

	Retrieve the pull request associated with this issue.

	Returns

	the pull request associated with this issue

	Return type

	PullRequest

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_all_labels()

	Remove all labels from this issue.

	Returns

	the list of current labels (empty) if successful

	Return type

	list

	
remove_assignees(users)

	Unassign users from this issue.

This is a shortcut for edit().

	Parameters

	users (list of str) – users or usernames to unassign this issue from

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_label(name)

	Remove label name from this issue.

	Parameters

	name (str) – (required), name of the label to remove

	Returns

	list of removed labels

	Return type

	ShortLabel

	
reopen()

	Re-open a closed issue.

Note

This is a short cut to using edit().

	Returns

	True if successful, False otherwise

	Return type

	bool

	
replace_labels(labels)

	Replace all labels on this issue with labels.

	Parameters

	labels (list) – label names

	Returns

	list of labels

	Return type

	ShortLabel

	
unlock()

	Unlock an issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.issues.issue.Issue(json, session)

	Object for the full representation of an Issue.

GitHub’s API returns different amounts of information about issues based
upon how that information is retrieved. This object exists to represent
the full amount of information returned for a specific issue. For example,
you would receive this class when calling
issue(). To provide a clear
distinction between the types of issues, github3.py uses different classes
with different sets of attributes.

Changed in version 1.0.0.

This object has all of the same attributes as a
ShortIssue as well as the following:

	
body_html

	The HTML formatted body of this issue.

	
body_text

	The plain-text formatted body of this issue.

	
closed_by

	If the issue is closed, a ShortUser
representing the user who closed the issue.

	
add_assignees(users)

	Assign users to this issue.

This is a shortcut for edit().

	Parameters

	users (list of str) – users or usernames to assign this issue to

	Returns

	True if successful, False otherwise

	Return type

	bool

	
add_labels(*args)

	Add labels to this issue.

	Parameters

	args (str) – (required), names of the labels you wish to add

	Returns

	list of labels

	Return type

	ShortLabel

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
assign(username)

	Assign user username to this issue.

Deprecated since version 1.2.0: Use github3.issues.issue.Issue.add_assignees() instead.

This is a short cut for edit().

	Parameters

	username (str) – username of the person to assign this issue to

	Returns

	True if successful, False, otherwise

	Return type

	bool

	
close()

	Close this issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
comment(id_num)

	Get a single comment by its id.

The catch here is that id is NOT a simple number to obtain. If
you were to look at the comments on issue #15 in
sigmavirus24/Todo.txt-python, the first comment’s id is 4150787.

	Parameters

	id_num (int) – (required), comment id, see example above

	Returns

	the comment identified by id_num

	Return type

	IssueComment

	
comments(number=-1, sort=u'', direction=u'', since=None)

	Iterate over the comments on this issue.

	Parameters

	
	number (int) – (optional), number of comments to iterate over
Default: -1 returns all comments

	sort (str) – accepted valuees: (‘created’, ‘updated’) api-default: created

	direction (str) – accepted values: (‘asc’, ‘desc’) Ignored without the sort parameter

	since (datetime or string) – (optional), Only issues after this date will be returned. This can
be a datetime or an ISO8601 formatted date string, e.g.,
2012-05-20T23:10:27Z

	Returns

	iterator of comments

	Return type

	IssueComment

	
create_comment(body)

	Create a comment on this issue.

	Parameters

	body (str) – (required), comment body

	Returns

	the created comment

	Return type

	IssueComment

	
edit(title=None, body=None, assignee=None, state=None, milestone=None, labels=None, assignees=None)

	Edit this issue.

	Parameters

	
	title (str) – title of the issue

	body (str) – markdown formatted body (description) of the issue

	assignee (str) – login name of user the issue should be assigned to

	state (str) – accepted values: (‘open’, ‘closed’)

	milestone (int) – the number (not title) of the milestone to assign this to,
or 0 to remove the milestone

Note

This is not the milestone’s globally unique identifier, it’s
value in number.

	labels (list) – list of labels to apply this to

	assignees (list of strings) – (optional), login of the users to assign the issue to

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1)

	Iterate over events associated with this issue only.

	Parameters

	number (int) – (optional), number of events to return. Default: -1 returns all
events available.

	Returns

	generator of events on this issues

	Return type

	IssueEvent

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
is_closed()

	Check if the issue is closed.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
labels(number=-1, etag=None)

	Iterate over the labels associated with this issue.

	Parameters

	
	number (int) – (optional), number of labels to return. Default: -1 returns all
labels applied to this issue.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of labels on this issue

	Return type

	ShortLabel

	
lock()

	Lock an issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
pull_request()

	Retrieve the pull request associated with this issue.

	Returns

	the pull request associated with this issue

	Return type

	PullRequest

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_all_labels()

	Remove all labels from this issue.

	Returns

	the list of current labels (empty) if successful

	Return type

	list

	
remove_assignees(users)

	Unassign users from this issue.

This is a shortcut for edit().

	Parameters

	users (list of str) – users or usernames to unassign this issue from

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_label(name)

	Remove label name from this issue.

	Parameters

	name (str) – (required), name of the label to remove

	Returns

	list of removed labels

	Return type

	ShortLabel

	
reopen()

	Re-open a closed issue.

Note

This is a short cut to using edit().

	Returns

	True if successful, False otherwise

	Return type

	bool

	
replace_labels(labels)

	Replace all labels on this issue with labels.

	Parameters

	labels (list) – label names

	Returns

	list of labels

	Return type

	ShortLabel

	
unlock()

	Unlock an issue.

	Returns

	True if successful, False otherwise

	Return type

	bool

Issue Comments

	
class github3.issues.comment.IssueComment(json, session)

	Representation of a comment left on an issue.

See also: http://developer.github.com/v3/issues/comments/

This object has the following attributes:

	
author_association

	The association of the author (user) with the repository
this issue belongs to.

	
body

	The markdown formatted original text written by the author.

	
body_html

	The HTML formatted comment body.

	
body_text

	The plain-text formatted comment body.

	
created_at

	A datetime object representing the date and time
when this comment was created.

	
html_url

	The URL to view this comment in a browser.

	
id

	The unique identifier for this comment.

	
issue_url

	The URL of the parent issue in the API.

	
updated_at

	A datetime object representing the date and time
when this comment was most recently updated.

	
user

	A ShortUser representing the author of this
comment.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this comment.

	Returns

	bool

	
edit(body)

	Edit this comment.

	Parameters

	body (str) – (required), new body of the comment, Markdown
formatted

	Returns

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Issue Events

	
class github3.issues.event.IssueEvent(json, session)

	Representation of an event from a specific issue.

This object will be instantiated from calling
events() which calls
https://developer.github.com/v3/issues/events/#list-events-for-an-issue

See also: http://developer.github.com/v3/issues/events

This object has the following attributes:

	
actor

	A ShortUser representing the user who
generated this event.

	
commit_id

	The string SHA of a commit that referenced the parent issue. If there
was no commit referencing this issue, then this will be None.

	
commit_url

	The URL to retrieve commit information from the API for the commit
that references the parent issue. If there was no commit, this will be
None.

	
created_at

	A datetime object representing the date and time
this event occurred.

	
event

	The issue-specific action that generated this event. Some examples
are:

	closed

	reopened

	subscribed

	merged

	referenced

	mentioned

	assigned

See this list of events [https://developer.github.com/v3/issues/events/#events-1] for a full listing.

	
id

	The unique identifier for this event.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
class github3.issues.event.RepositoryIssueEvent(json, session)

	Representation of an issue event on the repository level.

This object will be instantiated from calling
issue_events() or
issue_events() which call
https://developer.github.com/v3/issues/events/#list-events-for-a-repository

See also: http://developer.github.com/v3/issues/events

This object has all of the attributes of
IssueEvent and the following:

	
issue

	A ShortIssue representing the issue
where this event originated from.

Issue Labels

	
class github3.issues.label.Label(json, session)

	A representation of a label object defined on a repository.

See also: http://developer.github.com/v3/issues/labels/

This object has the following attributes:

.. attribute:: color

The hexadecimeal representation of the background color of this label.

	
desciption

	The description for this label.

	
name

	The name (display label) for this label.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this label.

	Returns

	True if successfully deleted, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
update(name, color, description=None)

	Update this label.

	Parameters

	
	name (str) – (required), new name of the label

	color (str) – (required), color code, e.g., 626262, no leading ‘#’

	description (str) – (optional), new description of the label

	Returns

	True if successfully updated, False otherwise

	Return type

	bool

Milestone Objects

	
class github3.issues.milestone.Milestone(json, session)

	Representation of milestones on a repository.

See also: http://developer.github.com/v3/issues/milestones/

This object has the following attributes:

	
closed_issues_count

	The number of closed issues in this milestone.

	
created_at

	A datetime object representing the date and time
when this milestone was created.

	
creator

	If present, a ShortUser representing the user
who created this milestone.

	
description

	The written description of this milestone and its purpose.

	
due_on

	If set, a datetime object representing the date and
time when this milestone is due.

	
id

	The unique identifier of this milestone in GitHub.

	
number

	The repository-local numeric identifier of this milestone. This starts
at 1 like issues.

	
open_issues_count

	The number of open issues still in this milestone.

	
state

	The state of this milestone, e.g., 'open' or 'closed'.

	
title

	The title of this milestone.

	
updated_at

	A datetime object representing the date and time
when this milestone was last updated.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this milestone.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
labels(number=-1, etag=None)

	Iterate over the labels of every associated issue.

Changed in version 0.9: Add etag parameter.

	Parameters

	
	number (int) – (optional), number of labels to return. Default: -1 returns all
available labels.

	etag (str) – (optional), ETag header from a previous response

	Returns

	generator of labels

	Return type

	ShortLabel

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
update(title=None, state=None, description=None, due_on=None)

	Update this milestone.

All parameters are optional, but it makes no sense to omit all of them
at once.

	Parameters

	
	title (str) – (optional), new title of the milestone

	state (str) – (optional), (‘open’, ‘closed’)

	description (str) – (optional)

	due_on (str) – (optional), ISO 8601 time format: YYYY-MM-DDTHH:MM:SSZ

	Returns

	True if successful, False otherwise

	Return type

	bool

Notifications

This part of the documentation covers the notifications module which contains
all of the classes used to represent notification objects in github3.py.

Notification Objects

	
class github3.notifications.Thread(json, session)

	Object representing a notification thread.

Changed in version 1.0.0: The comment, thread, and url attributes are no longer
present because GitHub stopped returning the comment that caused
the notification.

The is_unread method was removed since it just returned the
unread attribute.

This object has the following attributes:

	
id

	The unique identifier for this notification across all GitHub
notifications.

	
last_read_at

	A datetime object representing the date and time
when the authenticated user last read this thread.

	
reason

	The reason the authenticated user is receiving this notification.

	
repository

	A ShortRepository this thread originated on.

	
subject

	A dictionary with the subject of the notification, for example, which
issue, pull request, or diff this is in relation to.

	
unread

	A boolean attribute indicating whether this thread has been read or
not.

	
updated_at

	A datetime representing the date and time when this
thread was last updated.

See also:
http://developer.github.com/v3/activity/notifications/

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete_subscription()

	Delete subscription for this thread.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
mark()

	Mark the thread as read.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
set_subscription(subscribed, ignored)

	Set the user’s subscription for this thread.

	Parameters

	
	subscribed (bool) – (required), determines if notifications should be received from
this thread.

	ignored (bool) – (required), determines if notifications should be ignored from this
thread.

	Returns

	new subscription

	Return type

	ThreadSubscription

	
subscription()

	Check the status of the user’s subscription to this thread.

	Returns

	the subscription for this thread

	Return type

	ThreadSubscription

	
class github3.notifications.ThreadSubscription(json, session)

	This object provides a representation of a thread subscription.

See also:
developer.github.com/v3/activity/notifications/#get-a-thread-subscription

Changed in version 1.0.0: The is_ignored and is_subscribed methods were removed. Use the
:attr`ignored` and subscribed attributes instead.

This object has the following attributes:

	
created_at

	A datetime object representing the date and time
the user was subscribed to the thread.

	
ignored

	A boolean attribute indicating whether the user ignored this.

	
reason

	The reason the user is subscribed to the thread.

	
subscribed

	A boolean attribute indicating whether the user is subscribed or not.

	
thread_url

	The URL of the thread resource in the GitHub API.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this subscription.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
set(subscribed, ignored)

	Set the user’s subscription for this subscription.

	Parameters

	
	subscribed (bool) – (required), determines if notifications should be received from
this thread.

	ignored (bool) – (required), determines if notifications should be ignored from this
thread.

	
class github3.notifications.RepositorySubscription(json, session)

	This object provides a representation of a thread subscription.

See also:
developer.github.com/v3/activity/notifications/#get-a-thread-subscription

Changed in version 1.0.0: The is_ignored and is_subscribed methods were removed. Use the
:attr`ignored` and subscribed attributes instead.

This object has the following attributes:

	
created_at

	A datetime object representing the date and time
the user was subscribed to the thread.

	
ignored

	A boolean attribute indicating whether the user ignored this.

	
reason

	The reason the user is subscribed to the thread.

	
repository_url

	The URL of the repository resource in the GitHub API.

	
subscribed

	A boolean attribute indicating whether the user is subscribed or not.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this subscription.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
set(subscribed, ignored)

	Set the user’s subscription for this subscription.

	Parameters

	
	subscribed (bool) – (required), determines if notifications should be received from
this thread.

	ignored (bool) – (required), determines if notifications should be ignored from this
thread.

Organizations and their Related Objects

This section of the documentation covers the objects that represent data
returned by the API for organizations.

Team Objects

	
class github3.orgs.ShortTeam(json, session)

	Object representing a team in the GitHub API.

	
id

	Unique identifier for this team across all of GitHub.

	
members_count

	The number of members in this team.

	
members_urlt

	A URITemplate instance to either retrieve all
members in this team or to test if a user is a member.

	
name

	The human-readable name provided to this team.

	
permission

	The level of permissions this team has, e.g., push, pull,
or admin.

	
repos_count

	The number of repositories this team can access.

	
repositories_url

	The URL of the resource to enumerate all repositories this team can
access.

	
slug

	The handle for this team or the portion you would use in an
at-mention after the /, e.g., in @myorg/myteam the
slug is myteam.

Please see GitHub’s Team Documentation [http://developer.github.com/v3/orgs/teams/] for more information.

	
add_member(username)

	Add username to this team.

Deprecated since version 1.0.0: Use add_or_update_membership() instead.

	Parameters

	username (str) – the username of the user you would like to add to this team.

	Returns

	True if successfully added, False otherwise

	Return type

	bool

	
add_or_update_membership(username, role=u'member')

	Add or update the user’s membership in this team.

This returns a dictionary like so:

{
 'state': 'pending',
 'url': 'https://api.github.com/teams/...',
 'role': 'member',
}

	Parameters

	
	username (str) – (required), login of user whose membership is being modified

	role (str) – (optional), the role the user should have once their membership
has been modified. Options: ‘member’, ‘maintainer’. Default:
‘member’

	Returns

	dictionary of the invitation response

	Return type

	dict

	
add_repository(repository, permission=u'')

	Add repository to this team.

If a permission is not provided, the team’s default permission
will be assigned, by GitHub.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	permission (str) – (optional), (‘pull’, ‘push’, ‘admin’)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this team.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
edit(name, permission=u'')

	Edit this team.

	Parameters

	
	name (str) – (required), the new name of this team

	permission (str) – (optional), one of (‘pull’, ‘push’, ‘admin’)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
has_repository(repository)

	Check if this team has access to repository.

	Parameters

	repository (str) – (required), form: ‘user/repo’

	Returns

	True if the team can access the repository, False otherwise

	Return type

	bool

	
invite(username)

	Invite the user to join this team.

Deprecated since version 1.2.0: Use add_or_update_membership() instead.

This returns a dictionary like so:

{'state': 'pending', 'url': 'https://api.github.com/teams/...'}

	Parameters

	username (str) – (required), login of user to invite to join this team.

	Returns

	dictionary of the invitation response

	Return type

	dict

	
is_member(username)

	Check if login is a member of this team.

	Parameters

	username (str) – (required), username name of the user

	Returns

	True if the user is a member, False otherwise

	Return type

	bool

	
members(role=None, number=-1, etag=None)

	Iterate over the members of this team.

	Parameters

	
	role (str) – (optional), filter members returned by their role in the team.
Can be one of: "member", "maintainer", "all". Default:
"all".

	number (int) – (optional), number of users to iterate over. Default: -1 iterates
over all values

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of the members of this team

	Return type

	ShortUser

	
membership_for(username)

	Retrieve the membership information for the user.

	Parameters

	username (str) – (required), name of the user

	Returns

	dictionary with the membership

	Return type

	dict

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_member(username)

	Remove username from this team.

Deprecated since version 1.0.0: Use revoke_membership() instead.

	Parameters

	username (str) – (required), username of the member to remove

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_repository(repository)

	Remove repository from this team.

	Parameters

	repository (str) – (required), form: ‘user/repo’

	Returns

	True if successful, False otherwise

	Return type

	bool

	
repositories(number=-1, etag=None)

	Iterate over the repositories this team has access to.

	Parameters

	
	number (int) – (optional), number of repos to iterate over. Default: -1 iterates
over all values

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories this team has access to

	Return type

	ShortRepository

	
revoke_membership(username)

	Revoke this user’s team membership.

	Parameters

	username (str) – (required), name of the team member

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.orgs.Team(json, session)

	Object representing a team in the GitHub API.

In addition to the attributes on a ShortTeam a Team
has the following attribute:

	
created_at

	A datetime instance representing the time and date
when this team was created.

	
members_count

	The number of members in this team.

	
organization

	A ShortOrganization representing the
organization this team belongs to.

	
repos_count

	The number of repositories this team can access.

	
updated_at

	A datetime instance representing the time and date
when this team was updated.

Please see GitHub’s Team Documentation [http://developer.github.com/v3/orgs/teams/] for more information.

	
add_member(username)

	Add username to this team.

Deprecated since version 1.0.0: Use add_or_update_membership() instead.

	Parameters

	username (str) – the username of the user you would like to add to this team.

	Returns

	True if successfully added, False otherwise

	Return type

	bool

	
add_or_update_membership(username, role=u'member')

	Add or update the user’s membership in this team.

This returns a dictionary like so:

{
 'state': 'pending',
 'url': 'https://api.github.com/teams/...',
 'role': 'member',
}

	Parameters

	
	username (str) – (required), login of user whose membership is being modified

	role (str) – (optional), the role the user should have once their membership
has been modified. Options: ‘member’, ‘maintainer’. Default:
‘member’

	Returns

	dictionary of the invitation response

	Return type

	dict

	
add_repository(repository, permission=u'')

	Add repository to this team.

If a permission is not provided, the team’s default permission
will be assigned, by GitHub.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	permission (str) – (optional), (‘pull’, ‘push’, ‘admin’)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this team.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
edit(name, permission=u'')

	Edit this team.

	Parameters

	
	name (str) – (required), the new name of this team

	permission (str) – (optional), one of (‘pull’, ‘push’, ‘admin’)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
has_repository(repository)

	Check if this team has access to repository.

	Parameters

	repository (str) – (required), form: ‘user/repo’

	Returns

	True if the team can access the repository, False otherwise

	Return type

	bool

	
invite(username)

	Invite the user to join this team.

Deprecated since version 1.2.0: Use add_or_update_membership() instead.

This returns a dictionary like so:

{'state': 'pending', 'url': 'https://api.github.com/teams/...'}

	Parameters

	username (str) – (required), login of user to invite to join this team.

	Returns

	dictionary of the invitation response

	Return type

	dict

	
is_member(username)

	Check if login is a member of this team.

	Parameters

	username (str) – (required), username name of the user

	Returns

	True if the user is a member, False otherwise

	Return type

	bool

	
members(role=None, number=-1, etag=None)

	Iterate over the members of this team.

	Parameters

	
	role (str) – (optional), filter members returned by their role in the team.
Can be one of: "member", "maintainer", "all". Default:
"all".

	number (int) – (optional), number of users to iterate over. Default: -1 iterates
over all values

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of the members of this team

	Return type

	ShortUser

	
membership_for(username)

	Retrieve the membership information for the user.

	Parameters

	username (str) – (required), name of the user

	Returns

	dictionary with the membership

	Return type

	dict

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_member(username)

	Remove username from this team.

Deprecated since version 1.0.0: Use revoke_membership() instead.

	Parameters

	username (str) – (required), username of the member to remove

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_repository(repository)

	Remove repository from this team.

	Parameters

	repository (str) – (required), form: ‘user/repo’

	Returns

	True if successful, False otherwise

	Return type

	bool

	
repositories(number=-1, etag=None)

	Iterate over the repositories this team has access to.

	Parameters

	
	number (int) – (optional), number of repos to iterate over. Default: -1 iterates
over all values

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories this team has access to

	Return type

	ShortRepository

	
revoke_membership(username)

	Revoke this user’s team membership.

	Parameters

	username (str) – (required), name of the team member

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.orgs.Membership(json, session)

	Object describing a user’s membership in teams and organizations.

	
organization

	A ShortOrganization instance representing the
organization this membership is part of.

	
organization_url

	The URL of the organization resource in the API that this membership
is part of.

	
state

	The state of this membership, e.g., active or pending.

	
active

	
Warning

This is a computed attribute, it is not returned by the API.

A boolean attribute equivalent to self.state.lower() == 'active'.

	
pending

	
Warning

This is a computed attribute, it is not returned by the API.

A boolean attribute equivalent to self.state.lower() == 'pending'.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
edit(state)

	Edit the user’s membership.

	Parameters

	state (str) – (required), the state the membership should be in. Only accepts
"active".

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Organization Objects

	
class github3.orgs.ShortOrganization(json, session)

	Object for the shortened representation of an Organization.

GitHub’s API returns different amounts of information about orgs based
upon how that information is retrieved. Often times, when iterating over
several orgs, GitHub will return less information. To provide a clear
distinction between the types of orgs, github3.py uses different classes
with different sets of attributes.

New in version 1.0.0.

	
avatar_url

	The URL of the avatar image for this organization.

	
description

	The user-provided description of this organization.

	
events_url

	The URL to retrieve the events related to this organization.

	
hooks_url

	The URL for the resource to manage organization hooks.

	
id

	The unique identifier for this organization across GitHub.

	
issues_url

	The URL to retrieve the issues across this organization’s
repositories.

	
login

	The unique username of the organization.

	
members_url

	The URL to retrieve the members of this organization.

	
public_members_urlt

	A uritemplate.URITemplate that can be expanded to either list
the public members of this organization or verify a user is a public
member.

	
repos_url

	The URL to retrieve the repositories in this organization.

	
url

	The URL to retrieve this organization from the GitHub API.

	
type

	
Deprecated since version 1.0.0: This will be removed in a future release.

Previously returned by the API to indicate the type of the account.

	
add_member(username, team_id)

	Add username to team and thereby to this organization.

Warning

This method is no longer valid. To add a member to a team, you
must now retrieve the team directly, and use the invite
method.

Warning

This method is no longer valid. To add a member to a team, you
must now retrieve the team directly, and use the invite
method.

Any user that is to be added to an organization, must be added
to a team as per the GitHub api.

Changed in version 1.0: The second parameter used to be team but has been changed to
team_id. This parameter is now required to be an integer to
improve performance of this method.

	Parameters

	
	username (str) – (required), login name of the user to be added

	team_id (int) – (required), team id

	Returns

	True if successful, False otherwise

	Return type

	bool

	
add_or_update_membership(username, role=u'member')

	Add a member or update their role.

	Parameters

	
	username (str) – (required), user to add or update.

	role (str) – (optional), role to give to the user. Options are member,
admin. Defaults to member.

	Returns

	the created or updated membership

	Return type

	Membership

	Raises

	ValueError if role is not a valid choice

	
add_repository(repository, team_id)

	Add repository to team.

Changed in version 1.0: The second parameter used to be team but has been changed to
team_id. This parameter is now required to be an integer to
improve performance of this method.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	team_id (int) – (required), team id

	Returns

	True if successful, False otherwise

	Return type

	bool

	
all_events(username, number=-1, etag=None)

	Iterate over all org events visible to the authenticated user.

	Parameters

	
	username (str) – (required), the username of the currently authenticated user.

	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events

	Return type

	Event

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
conceal_member(username)

	Conceal username’s membership in this organization.

	Parameters

	username (str) – username of the organization member to conceal

	Returns

	True if successful, False otherwise

	Return type

	bool

	
create_hook(name, config, events=[u'push'], active=True)

	Create a hook on this organization.

	Parameters

	
	name (str) – (required), name of the hook

	config (dict) – (required), key-value pairs which act as settings for this hook

	events (list) – (optional), events the hook is triggered for

	active (bool) – (optional), whether the hook is actually triggered

	Returns

	the created hook

	Return type

	OrganizationHook

	
create_project(name, body=u'')

	Create a project for this organization.

If the client is authenticated and a member of the organization, this
will create a new project in the organization.

	Parameters

	
	name (str) – (required), name of the project

	body (str) – (optional), the body of the project

	Returns

	the new project

	Return type

	Project

	
create_repository(name, description=u'', homepage=u'', private=False, has_issues=True, has_wiki=True, team_id=0, auto_init=False, gitignore_template=u'', license_template=u'')

	Create a repository for this organization.

If the client is authenticated and a member of the organization, this
will create a new repository in the organization.

name should be no longer than 100 characters

	Parameters

	
	name (str) – (required), name of the repository

Warning

this should be no longer than 100 characters

	description (str) – (optional)

	homepage (str) – (optional)

	private (bool) – (optional), If True, create a private repository. API default:
False

	has_issues (bool) – (optional), If True, enable issues for this repository. API
default: True

	has_wiki (bool) – (optional), If True, enable the wiki for this repository. API
default: True

	team_id (int) – (optional), id of the team that will be granted access to this
repository

	auto_init (bool) – (optional), auto initialize the repository.

	gitignore_template (str) – (optional), name of the template; this is ignored if auto_int is
False.

	license_template (str) – (optional), name of the license; this is ignored if auto_int is
False.

	Returns

	the created repository

	Return type

	Repository

	
create_team(name, repo_names=[], permission=u'pull')

	Create a new team and return it.

This only works if the authenticated user owns this organization.

	Parameters

	
	name (str) – (required), name to be given to the team

	repo_names (list) – (optional) repositories, e.g. [‘github/dotfiles’]

	permission (str) – (optional), options:

	
	pull – (default) members can not push or administer

	repositories accessible by this team

	
	push – members can push and pull but not administer

	repositories accessible by this team

	
	admin – members can push, pull and administer

	repositories accessible by this team

	Returns

	the created team

	Return type

	Team

	
edit(billing_email=None, company=None, email=None, location=None, name=None, description=None, has_organization_projects=None, has_repository_projects=None, default_repository_permission=None, members_can_create_repositories=None)

	Edit this organization.

	Parameters

	
	billing_email (str) – (optional) Billing email address (private)

	company (str) – (optional)

	email (str) – (optional) Public email address

	location (str) – (optional)

	name (str) – (optional)

	description (str) – (optional) The description of the company.

	has_organization_projects (bool) – (optional) Toggles whether organization projects are enabled for
the organization.

	has_repository_projects (bool) – (optional) Toggles whether repository projects are enabled for
repositories that belong to the organization.

	default_repository_permission (string) – (optional) Default permission level members have for organization
repositories:

	
	read – (default) can pull, but not push to or administer

	this repository.

	
	write – can pull and push, but not administer this

	repository.

	admin – can pull, push, and administer this repository.

	none – no permissions granted by default.

	members_can_create_repositories (bool) – (optional) Toggles ability of non-admin organization members to
create repositories:

	
	True – (default) all organization members can create

	repositories.

	False – only admin members can create repositories.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1, etag=None)

	Iterate over public events for this org (deprecated).

Deprecated since version 1.0.0: Use public_events() instead.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events

	Return type

	Event

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
hook(hook_id)

	Get a single hook.

	Parameters

	hook_id (int) – (required), id of the hook

	Returns

	the hook

	Return type

	OrganizationHook

	
hooks(number=-1, etag=None)

	Iterate over hooks registered on this organization.

	Parameters

	
	number (int) – (optional), number of hoks to return. Default: -1
returns all hooks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of hooks

	Return type

	OrganizationHook

	
invitations(number=-1, etag=None)

	Iterate over outstanding invitations to this organization.

	Returns

	generator of invitation objects

	Return type

	Invitation

	
invite(team_ids, invitee_id=None, email=None, role=u'direct_member')

	Invite the user to join this organization.

	Parameters

	
	team_ids (list[int]) – (required), list of team identifiers to invite the user to

	invitee_id (int) – (required if email is not specified), the identifier for the user
being invited

	email (str) – (required if invitee_id is not specified), the email address of
the user being invited

	role (str) – (optional) role to provide to the invited user. Must be one of

	Returns

	the created invitation

	Return type

	Invitation

	
is_member(username)

	Check if the user named username is a member.

	Parameters

	username (str) – name of the user you’d like to check

	Returns

	True if successful, False otherwise

	Return type

	bool

	
is_public_member(username)

	Check if the user named username is a public member.

	Parameters

	username (str) – name of the user you’d like to check

	Returns

	True if the user is a public member, False otherwise

	Return type

	bool

	
members(filter=None, role=None, number=-1, etag=None)

	Iterate over members of this organization.

	Parameters

	
	filter (str) – (optional), filter members returned by this method. Can be one of:
"2fa_disabled", "all",. Default: "all". Filtering by
"2fa_disabled" is only available for organization owners with
private repositories.

	role (str) – (optional), filter members returned by their role. Can be one of:
"all", "admin", "member". Default: "all".

	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of members of this organization

	Return type

	ShortUser

	
membership_for(username)

	Obtain the membership status of username.

Implements
https://developer.github.com/v3/orgs/members/#get-organization-membership

	Parameters

	username (str) – (required), username name of the user

	Returns

	the membership information

	Return type

	Membership

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
project(id, etag=None)

	Return the organization project with the given ID.

	Parameters

	id (int) – (required), ID number of the project

	Returns

	requested project

	Return type

	Project

	
projects(number=-1, etag=None)

	Iterate over projects for this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of organization projects

	Return type

	Project

	
public_events(number=-1, etag=None)

	Iterate over public events for this org.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of public events

	Return type

	Event

	
public_members(number=-1, etag=None)

	Iterate over public members of this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of public members

	Return type

	ShortUser

	
publicize_member(username)

	Make username’s membership in this organization public.

	Parameters

	username (str) – the name of the user whose membership you wish to publicize

	Returns

	True if successful, False otherwise

	Return type

	bool

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_member(username)

	Remove the user named username from this organization.

Note

Only a user may publicize their own membership. See also:
https://developer.github.com/v3/orgs/members/#publicize-a-users-membership

	Parameters

	username (str) – name of the user to remove from the org

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_membership(username)

	Remove username from this organization.

Unlike remove_member, this will cancel a pending invitation.

	Parameters

	username (str) – (required), username of the member to remove

	Returns

	bool

	
remove_repository(repository, team_id)

	Remove repository from the team with team_id.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	team_id (int) – (required), the unique identifier of the team

	Returns

	True if successful, False otherwise

	Return type

	bool

	
repositories(type=u'', number=-1, etag=None)

	Iterate over repos for this organization.

	Parameters

	
	type (str) – (optional), accepted values: (‘all’, ‘public’, ‘member’, ‘private’,
‘forks’, ‘sources’), API default: ‘all’

	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories in this organization

	Return type

	Repository

	
team(team_id)

	Return the team specified by team_id.

	Parameters

	team_id (int) – (required), unique id for the team

	Returns

	the team identified by the id in this organization

	Return type

	Team

	
teams(number=-1, etag=None)

	Iterate over teams that are part of this organization.

	Parameters

	
	number (int) – (optional), number of teams to return. Default: -1 returns all
available teams.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of this organization’s teams

	Return type

	ShortTeam

	
class github3.orgs.Organization(json, session)

	Object for the full representation of a Organization.

GitHub’s API returns different amounts of information about orgs based
upon how that information is retrieved. This object exists to represent
the full amount of information returned for a specific org. For example,
you would receive this class when calling
organization(). To provide a clear
distinction between the types of orgs, github3.py uses different classes
with different sets of attributes.

Changed in version 1.0.0.

This object includes all attributes on
ShortOrganization as well as the following:

	
blog

	If set, the URL of this organization’s blog.

	
company

	The name of the company that is associated with this organization.

	
created_at

	A datetime instance representing the time and date
when this organization was created.

	
email

	The email address associated with this organization.

	
followers_count

	The number of users following this organization. Organizations no
longer have followers so this number will always be 0.

	
following_count

	The number of users this organization follows. Organizations no
longer follow users so this number will always be 0.

	
html_url

	The URL used to view this organization in a browser.

	
location

	The location of this organization, e.g., New York, NY.

	
name

	The display name of this organization.

	
public_repos_count

	The number of public repositories owned by thi sorganization.

	
add_member(username, team_id)

	Add username to team and thereby to this organization.

Warning

This method is no longer valid. To add a member to a team, you
must now retrieve the team directly, and use the invite
method.

Warning

This method is no longer valid. To add a member to a team, you
must now retrieve the team directly, and use the invite
method.

Any user that is to be added to an organization, must be added
to a team as per the GitHub api.

Changed in version 1.0: The second parameter used to be team but has been changed to
team_id. This parameter is now required to be an integer to
improve performance of this method.

	Parameters

	
	username (str) – (required), login name of the user to be added

	team_id (int) – (required), team id

	Returns

	True if successful, False otherwise

	Return type

	bool

	
add_or_update_membership(username, role=u'member')

	Add a member or update their role.

	Parameters

	
	username (str) – (required), user to add or update.

	role (str) – (optional), role to give to the user. Options are member,
admin. Defaults to member.

	Returns

	the created or updated membership

	Return type

	Membership

	Raises

	ValueError if role is not a valid choice

	
add_repository(repository, team_id)

	Add repository to team.

Changed in version 1.0: The second parameter used to be team but has been changed to
team_id. This parameter is now required to be an integer to
improve performance of this method.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	team_id (int) – (required), team id

	Returns

	True if successful, False otherwise

	Return type

	bool

	
all_events(username, number=-1, etag=None)

	Iterate over all org events visible to the authenticated user.

	Parameters

	
	username (str) – (required), the username of the currently authenticated user.

	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events

	Return type

	Event

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
conceal_member(username)

	Conceal username’s membership in this organization.

	Parameters

	username (str) – username of the organization member to conceal

	Returns

	True if successful, False otherwise

	Return type

	bool

	
create_hook(name, config, events=[u'push'], active=True)

	Create a hook on this organization.

	Parameters

	
	name (str) – (required), name of the hook

	config (dict) – (required), key-value pairs which act as settings for this hook

	events (list) – (optional), events the hook is triggered for

	active (bool) – (optional), whether the hook is actually triggered

	Returns

	the created hook

	Return type

	OrganizationHook

	
create_project(name, body=u'')

	Create a project for this organization.

If the client is authenticated and a member of the organization, this
will create a new project in the organization.

	Parameters

	
	name (str) – (required), name of the project

	body (str) – (optional), the body of the project

	Returns

	the new project

	Return type

	Project

	
create_repository(name, description=u'', homepage=u'', private=False, has_issues=True, has_wiki=True, team_id=0, auto_init=False, gitignore_template=u'', license_template=u'')

	Create a repository for this organization.

If the client is authenticated and a member of the organization, this
will create a new repository in the organization.

name should be no longer than 100 characters

	Parameters

	
	name (str) – (required), name of the repository

Warning

this should be no longer than 100 characters

	description (str) – (optional)

	homepage (str) – (optional)

	private (bool) – (optional), If True, create a private repository. API default:
False

	has_issues (bool) – (optional), If True, enable issues for this repository. API
default: True

	has_wiki (bool) – (optional), If True, enable the wiki for this repository. API
default: True

	team_id (int) – (optional), id of the team that will be granted access to this
repository

	auto_init (bool) – (optional), auto initialize the repository.

	gitignore_template (str) – (optional), name of the template; this is ignored if auto_int is
False.

	license_template (str) – (optional), name of the license; this is ignored if auto_int is
False.

	Returns

	the created repository

	Return type

	Repository

	
create_team(name, repo_names=[], permission=u'pull')

	Create a new team and return it.

This only works if the authenticated user owns this organization.

	Parameters

	
	name (str) – (required), name to be given to the team

	repo_names (list) – (optional) repositories, e.g. [‘github/dotfiles’]

	permission (str) – (optional), options:

	
	pull – (default) members can not push or administer

	repositories accessible by this team

	
	push – members can push and pull but not administer

	repositories accessible by this team

	
	admin – members can push, pull and administer

	repositories accessible by this team

	Returns

	the created team

	Return type

	Team

	
edit(billing_email=None, company=None, email=None, location=None, name=None, description=None, has_organization_projects=None, has_repository_projects=None, default_repository_permission=None, members_can_create_repositories=None)

	Edit this organization.

	Parameters

	
	billing_email (str) – (optional) Billing email address (private)

	company (str) – (optional)

	email (str) – (optional) Public email address

	location (str) – (optional)

	name (str) – (optional)

	description (str) – (optional) The description of the company.

	has_organization_projects (bool) – (optional) Toggles whether organization projects are enabled for
the organization.

	has_repository_projects (bool) – (optional) Toggles whether repository projects are enabled for
repositories that belong to the organization.

	default_repository_permission (string) – (optional) Default permission level members have for organization
repositories:

	
	read – (default) can pull, but not push to or administer

	this repository.

	
	write – can pull and push, but not administer this

	repository.

	admin – can pull, push, and administer this repository.

	none – no permissions granted by default.

	members_can_create_repositories (bool) – (optional) Toggles ability of non-admin organization members to
create repositories:

	
	True – (default) all organization members can create

	repositories.

	False – only admin members can create repositories.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1, etag=None)

	Iterate over public events for this org (deprecated).

Deprecated since version 1.0.0: Use public_events() instead.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events

	Return type

	Event

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
hook(hook_id)

	Get a single hook.

	Parameters

	hook_id (int) – (required), id of the hook

	Returns

	the hook

	Return type

	OrganizationHook

	
hooks(number=-1, etag=None)

	Iterate over hooks registered on this organization.

	Parameters

	
	number (int) – (optional), number of hoks to return. Default: -1
returns all hooks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of hooks

	Return type

	OrganizationHook

	
invitations(number=-1, etag=None)

	Iterate over outstanding invitations to this organization.

	Returns

	generator of invitation objects

	Return type

	Invitation

	
invite(team_ids, invitee_id=None, email=None, role=u'direct_member')

	Invite the user to join this organization.

	Parameters

	
	team_ids (list[int]) – (required), list of team identifiers to invite the user to

	invitee_id (int) – (required if email is not specified), the identifier for the user
being invited

	email (str) – (required if invitee_id is not specified), the email address of
the user being invited

	role (str) – (optional) role to provide to the invited user. Must be one of

	Returns

	the created invitation

	Return type

	Invitation

	
is_member(username)

	Check if the user named username is a member.

	Parameters

	username (str) – name of the user you’d like to check

	Returns

	True if successful, False otherwise

	Return type

	bool

	
is_public_member(username)

	Check if the user named username is a public member.

	Parameters

	username (str) – name of the user you’d like to check

	Returns

	True if the user is a public member, False otherwise

	Return type

	bool

	
members(filter=None, role=None, number=-1, etag=None)

	Iterate over members of this organization.

	Parameters

	
	filter (str) – (optional), filter members returned by this method. Can be one of:
"2fa_disabled", "all",. Default: "all". Filtering by
"2fa_disabled" is only available for organization owners with
private repositories.

	role (str) – (optional), filter members returned by their role. Can be one of:
"all", "admin", "member". Default: "all".

	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of members of this organization

	Return type

	ShortUser

	
membership_for(username)

	Obtain the membership status of username.

Implements
https://developer.github.com/v3/orgs/members/#get-organization-membership

	Parameters

	username (str) – (required), username name of the user

	Returns

	the membership information

	Return type

	Membership

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
project(id, etag=None)

	Return the organization project with the given ID.

	Parameters

	id (int) – (required), ID number of the project

	Returns

	requested project

	Return type

	Project

	
projects(number=-1, etag=None)

	Iterate over projects for this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of organization projects

	Return type

	Project

	
public_events(number=-1, etag=None)

	Iterate over public events for this org.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1 iterates over
all events available.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of public events

	Return type

	Event

	
public_members(number=-1, etag=None)

	Iterate over public members of this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of public members

	Return type

	ShortUser

	
publicize_member(username)

	Make username’s membership in this organization public.

	Parameters

	username (str) – the name of the user whose membership you wish to publicize

	Returns

	True if successful, False otherwise

	Return type

	bool

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
remove_member(username)

	Remove the user named username from this organization.

Note

Only a user may publicize their own membership. See also:
https://developer.github.com/v3/orgs/members/#publicize-a-users-membership

	Parameters

	username (str) – name of the user to remove from the org

	Returns

	True if successful, False otherwise

	Return type

	bool

	
remove_membership(username)

	Remove username from this organization.

Unlike remove_member, this will cancel a pending invitation.

	Parameters

	username (str) – (required), username of the member to remove

	Returns

	bool

	
remove_repository(repository, team_id)

	Remove repository from the team with team_id.

	Parameters

	
	repository (str) – (required), form: ‘user/repo’

	team_id (int) – (required), the unique identifier of the team

	Returns

	True if successful, False otherwise

	Return type

	bool

	
repositories(type=u'', number=-1, etag=None)

	Iterate over repos for this organization.

	Parameters

	
	type (str) – (optional), accepted values: (‘all’, ‘public’, ‘member’, ‘private’,
‘forks’, ‘sources’), API default: ‘all’

	number (int) – (optional), number of members to return. Default: -1 will return
all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repositories in this organization

	Return type

	Repository

	
team(team_id)

	Return the team specified by team_id.

	Parameters

	team_id (int) – (required), unique id for the team

	Returns

	the team identified by the id in this organization

	Return type

	Team

	
teams(number=-1, etag=None)

	Iterate over teams that are part of this organization.

	Parameters

	
	number (int) – (optional), number of teams to return. Default: -1 returns all
available teams.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of this organization’s teams

	Return type

	ShortTeam

Pull Requests and their Associated Objects

This section of the documentation covers the representations of various
objects related to the Pull Requests API [https://developer.github.com/v3/pulls/].

Pull Request Objects

	
class github3.pulls.ShortPullRequest(json, session)

	Object for the shortened representation of a PullRequest.

GitHub’s API returns different amounts of information about prs based
upon how that information is retrieved. Often times, when iterating over
several prs, GitHub will return less information. To provide a clear
distinction between the types of Pull Requests, github3.py uses different
classes with different sets of attributes.

New in version 1.0.0.

The attributes available on this object are:

	
url

	The URL that describes this exact pull request.

	
assignee

	
Deprecated since version 1.0.0: Use assignees instead.

The assignee of the pull request, if present, represented as an
instance of ShortUser

	
assignees

	
New in version 1.0.0.

A list of the assignees of the pull request. If not empty, a list
of instances of ShortUser.

	
base

	A Base object representing the base pull
request destination.

	
body

	The Markdown formatted body of the pull request message.

	
body_html

	The HTML formatted body of the pull request mesage.

	
body_text

	The plain-text formatted body of the pull request message.

	
closed_at

	A datetime object representing the date and time
when this pull request was closed.

	
comments_url

	The URL to retrieve the comments on this pull request from the API.

	
commits_url

	The URL to retrieve the commits in this pull request from the API.

	
created_at

	A datetime object representing the date and time
when this pull request was created.

	
diff_url

	The URL to retrieve the diff for this pull request via the API.

	
head

	A Head object representing the head pull
request destination.

	
html_url

	The URL one would use to view this pull request in the browser.

	
id

	The unique ID of this pull request across all of GitHub.

	
issue_url

	The URL of the resource that represents this pull request as an issue.

	
links

	A dictionary provided by _links in the API response.

New in version 1.0.0.

	
merge_commit_sha

	If unmerged, holds the sha of the commit to test mergability.
If merged, holds commit sha of the merge commit, squashed commit on
the base branch or the commit that the base branch was updated to
after rebasing the PR.

	
merged_at

	A datetime object representing the date and time
this pull request was merged. If this pull request has not been merged
then this attribute will be None.

	
number

	The number of the pull request on the repository.

	
patch_url

	The URL to retrieve the patch for this pull request via the API.

	
repository

	A ShortRepository from the base
instance.

	
requested_reviewers

	A list of ShortUser from which a review was
requested.

	
requested_teams

	A list of ShortTeam from which a review was
requested.

	
review_comment_urlt

	A URITemplate instance that expands to provide the review comment URL
provided a number.

	
review_comments_url

	The URl to retrieve all review comments on this pull request from the
API.

	
state

	The current state of this pull request.

	
title

	The title of this pull request.

	
updated_at

	A datetime instance representing the date and time
when this pull request was last updated.

	
user

	A ShortUser instance representing who opened
this pull request.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
close()

	Close this Pull Request without merging.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
commits(number=-1, etag=None)

	Iterate over the commits on this pull request.

	Parameters

	
	number (int) – (optional), number of commits to return. Default: -1 returns all
available commits.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repository commit objects

	Return type

	ShortCommit

	
create_comment(body)

	Create a comment on this pull request’s issue.

	Parameters

	body (str) – (required), comment body

	Returns

	the comment that was created on the pull request

	Return type

	IssueComment

	
create_review(body, commit_id=None, event=None, comments=None)

	Create a review comment on this pull request.

Warning

If you do not specify event, GitHub will default it
to PENDING which means that your review will need to
be submitted after creation. (See also
submit().)

	Parameters

	
	body (str) – The comment text itself, required when using COMMENT or
REQUEST_CHANGES.

	commit_id (str) – The SHA of the commit to comment on

	event (str) – The review action you want to perform. Actions include
APPROVE, REQUEST_CHANGES or COMMENT. By leaving this blank
you set the action to PENDING and will need to submit the
review. Leaving blank may result in a 422 error response
which will need to be handled.

	comments (list) – Array of draft review comment objects. Please see Github’s
Create a pull request review documentation [https://developer.github.com/v3/pulls/reviews/#create-a-pull-request-review] for details
on review comment objects. At the time of writing these
were a dictionary with 3 keys: path, position and
body.

	Returns

	The created review.

	Return type

	PullReview

	
create_review_comment(body, commit_id, path, position)

	Create a review comment on this pull request.

Note

All parameters are required by the GitHub API.

	Parameters

	
	body (str) – The comment text itself

	commit_id (str) – The SHA of the commit to comment on

	path (str) – The relative path of the file to comment on

	position (int) – The line index in the diff to comment on.

	Returns

	The created review comment.

	Return type

	ReviewComment

	
create_review_requests(reviewers=None, team_reviewers=None)

	Ask for reviews on this pull request.

	Parameters

	
	reviewers (list) – The users to which request a review

	team_reviewers (list) – The teams to which request a review

	Returns

	The pull request on which the reviews were requested

	Return type

	ShortPullRequest

	
delete_review_requests(reviewers=None, team_reviewers=None)

	Cancel review requests on this pull request.

	Parameters

	
	reviewers (list) – The users whose review is no longer requested

	team_reviewers (list) – The teams whose review is no longer requested

	Returns

	True if successful, False otherwise

	Return type

	bool

	
diff()

	Return the diff.

	Returns

	representation of the diff

	Return type

	bytes

	
files(number=-1, etag=None)

	Iterate over the files associated with this pull request.

	Parameters

	
	number (int) – (optional), number of files to return. Default: -1 returns all
available files.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of pull request files

	Return type

	PullFile

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
is_merged()

	Check to see if the pull request was merged.

Changed in version 1.0.0: This now always makes a call to the GitHub API. To avoid that,
check merged before making this call.

	Returns

	True if merged, False otherwise

	Return type

	bool

	
issue()

	Retrieve the issue associated with this pull request.

	Returns

	the issue object that this pull request builds upon

	Return type

	Issue

	
issue_comments(number=-1, etag=None)

	Iterate over the issue comments on this pull request.

In this case, GitHub leaks implementation details. Pull Requests are
really just Issues with a diff. As such, comments on a pull request
that are not in-line with code, are technically issue comments.

	Parameters

	
	number (int) – (optional), number of comments to return. Default: -1 returns all
available comments.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of non-review comments on this pull request

	Return type

	IssueComment

	
merge(commit_message=None, sha=None, merge_method=u'merge', commit_title=None)

	Merge this pull request.

Changed in version 1.3.0: The commit_title parameter has been added to allow users to
set the merge commit title.

Changed in version 1.0.0: The boolean squash parameter has been replaced with
merge_method which requires a string.

	Parameters

	
	commit_message (str) – (optional), message to be used for the merge commit

	commit_title (str) – (optional), message to be used for the merge commit title

	sha (str) – (optional), SHA that pull request head must match to merge.

	merge_method (str) – (optional), Change the merge method.
Either ‘merge’, ‘squash’ or ‘rebase’. Default is ‘merge’.

	Returns

	True if successful, False otherwise

	Return type

	bool

	Returns

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
patch()

	Return the patch.

	Returns

	bytestring representation of the patch

	Return type

	bytes

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
reopen()

	Re-open a closed Pull Request.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
review_comments(number=-1, etag=None)

	Iterate over the review comments on this pull request.

	Parameters

	
	number (int) – (optional), number of comments to return. Default: -1 returns all
available comments.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of review comments

	Return type

	ReviewComment

	
review_requests()

	Retrieve the review requests associated with this pull request.

	Returns

	review requests associated with this pull request

	Return type

	ReviewRequests

	
reviews(number=-1, etag=None)

	Iterate over the reviews associated with this pull request.

	Parameters

	
	number (int) – (optional), number of reviews to return. Default: -1 returns all
available files.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of reviews for this pull request

	Return type

	PullReview

	
update(title=None, body=None, state=None, base=None, maintainer_can_modify=None)

	Update this pull request.

	Parameters

	
	title (str) – (optional), title of the pull

	body (str) – (optional), body of the pull request

	state (str) – (optional), one of (‘open’, ‘closed’)

	base (str) – (optional), Name of the branch on the current repository that the
changes should be pulled into.

	maintainer_can_modify (bool) – (optional), Indicates whether a maintainer is allowed to modify the
pull request or not.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.pulls.PullRequest(json, session)

	Object for the full representation of a PullRequest.

GitHub’s API returns different amounts of information about prs based
upon how that information is retrieved. This object exists to represent
the full amount of information returned for a specific pr. For example,
you would receive this class when calling
pull_request(). To provide a clear
distinction between the types of prs, github3.py uses different classes
with different sets of attributes.

Changed in version 1.0.0.

This object has all of the same attributes as
ShortPullRequest as well as the following:

	
additions_count

	The number of lines of code added in this pull request.

	
deletions_count

	The number of lines of code deleted in this pull request.

	
comments_count

	The number of comments left on this pull request.

	
commits_count

	The number of commits included in this pull request.

	
mergeable

	A boolean attribute indicating whether GitHub deems this pull request
is mergeable.

	
mergeable_state

	A string indicating whether this would be a ‘clean’ or ‘dirty’ merge.

	
merged

	A boolean attribute indicating whether the pull request has been merged
or not.

	
merged_by

	An instance of ShortUser to indicate the user
who merged this pull request. If this hasn’t been merged or if
mergeable is still being decided by GitHub this will be
None.

	
review_comments_count

	The number of review comments on this pull request.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
close()

	Close this Pull Request without merging.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
commits(number=-1, etag=None)

	Iterate over the commits on this pull request.

	Parameters

	
	number (int) – (optional), number of commits to return. Default: -1 returns all
available commits.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repository commit objects

	Return type

	ShortCommit

	
create_comment(body)

	Create a comment on this pull request’s issue.

	Parameters

	body (str) – (required), comment body

	Returns

	the comment that was created on the pull request

	Return type

	IssueComment

	
create_review(body, commit_id=None, event=None, comments=None)

	Create a review comment on this pull request.

Warning

If you do not specify event, GitHub will default it
to PENDING which means that your review will need to
be submitted after creation. (See also
submit().)

	Parameters

	
	body (str) – The comment text itself, required when using COMMENT or
REQUEST_CHANGES.

	commit_id (str) – The SHA of the commit to comment on

	event (str) – The review action you want to perform. Actions include
APPROVE, REQUEST_CHANGES or COMMENT. By leaving this blank
you set the action to PENDING and will need to submit the
review. Leaving blank may result in a 422 error response
which will need to be handled.

	comments (list) – Array of draft review comment objects. Please see Github’s
Create a pull request review documentation [https://developer.github.com/v3/pulls/reviews/#create-a-pull-request-review] for details
on review comment objects. At the time of writing these
were a dictionary with 3 keys: path, position and
body.

	Returns

	The created review.

	Return type

	PullReview

	
create_review_comment(body, commit_id, path, position)

	Create a review comment on this pull request.

Note

All parameters are required by the GitHub API.

	Parameters

	
	body (str) – The comment text itself

	commit_id (str) – The SHA of the commit to comment on

	path (str) – The relative path of the file to comment on

	position (int) – The line index in the diff to comment on.

	Returns

	The created review comment.

	Return type

	ReviewComment

	
create_review_requests(reviewers=None, team_reviewers=None)

	Ask for reviews on this pull request.

	Parameters

	
	reviewers (list) – The users to which request a review

	team_reviewers (list) – The teams to which request a review

	Returns

	The pull request on which the reviews were requested

	Return type

	ShortPullRequest

	
delete_review_requests(reviewers=None, team_reviewers=None)

	Cancel review requests on this pull request.

	Parameters

	
	reviewers (list) – The users whose review is no longer requested

	team_reviewers (list) – The teams whose review is no longer requested

	Returns

	True if successful, False otherwise

	Return type

	bool

	
diff()

	Return the diff.

	Returns

	representation of the diff

	Return type

	bytes

	
files(number=-1, etag=None)

	Iterate over the files associated with this pull request.

	Parameters

	
	number (int) – (optional), number of files to return. Default: -1 returns all
available files.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of pull request files

	Return type

	PullFile

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
is_merged()

	Check to see if the pull request was merged.

Changed in version 1.0.0: This now always makes a call to the GitHub API. To avoid that,
check merged before making this call.

	Returns

	True if merged, False otherwise

	Return type

	bool

	
issue()

	Retrieve the issue associated with this pull request.

	Returns

	the issue object that this pull request builds upon

	Return type

	Issue

	
issue_comments(number=-1, etag=None)

	Iterate over the issue comments on this pull request.

In this case, GitHub leaks implementation details. Pull Requests are
really just Issues with a diff. As such, comments on a pull request
that are not in-line with code, are technically issue comments.

	Parameters

	
	number (int) – (optional), number of comments to return. Default: -1 returns all
available comments.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of non-review comments on this pull request

	Return type

	IssueComment

	
merge(commit_message=None, sha=None, merge_method=u'merge', commit_title=None)

	Merge this pull request.

Changed in version 1.3.0: The commit_title parameter has been added to allow users to
set the merge commit title.

Changed in version 1.0.0: The boolean squash parameter has been replaced with
merge_method which requires a string.

	Parameters

	
	commit_message (str) – (optional), message to be used for the merge commit

	commit_title (str) – (optional), message to be used for the merge commit title

	sha (str) – (optional), SHA that pull request head must match to merge.

	merge_method (str) – (optional), Change the merge method.
Either ‘merge’, ‘squash’ or ‘rebase’. Default is ‘merge’.

	Returns

	True if successful, False otherwise

	Return type

	bool

	Returns

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
patch()

	Return the patch.

	Returns

	bytestring representation of the patch

	Return type

	bytes

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
reopen()

	Re-open a closed Pull Request.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
review_comments(number=-1, etag=None)

	Iterate over the review comments on this pull request.

	Parameters

	
	number (int) – (optional), number of comments to return. Default: -1 returns all
available comments.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of review comments

	Return type

	ReviewComment

	
review_requests()

	Retrieve the review requests associated with this pull request.

	Returns

	review requests associated with this pull request

	Return type

	ReviewRequests

	
reviews(number=-1, etag=None)

	Iterate over the reviews associated with this pull request.

	Parameters

	
	number (int) – (optional), number of reviews to return. Default: -1 returns all
available files.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of reviews for this pull request

	Return type

	PullReview

	
update(title=None, body=None, state=None, base=None, maintainer_can_modify=None)

	Update this pull request.

	Parameters

	
	title (str) – (optional), title of the pull

	body (str) – (optional), body of the pull request

	state (str) – (optional), one of (‘open’, ‘closed’)

	base (str) – (optional), Name of the branch on the current repository that the
changes should be pulled into.

	maintainer_can_modify (bool) – (optional), Indicates whether a maintainer is allowed to modify the
pull request or not.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.pulls.PullDestination(json, session)

	The object that represents a pull request destination.

This is the base class for the Head and
Base objects. Each has identical attributes to
this object.

Please see GitHub’s Pull Request Documentation [http://developer.github.com/v3/pulls/#get-a-single-pull-request] for more information.

	
ref

	The full reference string for the git object

	
label

	The label for the destination (e.g., ‘master’, ‘mybranch’)

	
user

	If provided, a ShortUser instance representing
the owner of the destination

	
sha

	The SHA of the commit at the head of the destination

	
repository

	A ShortRepository representing the
repository containing this destination

	
repo

	A tuple containing the login and repository name, e.g.,
(‘sigmavirus24’, ‘github3.py’)

This attribute is generated by github3.py and may be deprecated in the
future.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
class github3.pulls.Head(json, session)

	An object representing the Head destination of a pull request.

See PullDestination for more details.

	
class github3.pulls.Base(json, session)

	An object representing the Base destination of a pull request.

See PullDestination for more details.

	
class github3.pulls.PullFile(json, session)

	The object that represents a file in a pull request.

Please see GitHub’s Pull Request Files Documentation [http://developer.github.com/v3/pulls/#list-pull-requests-files] for more
information.

	
additions_count

	The number of additions made to this file

	
blob_url

	The API resource used to retrieve the blob for this file

	
changes_count

	The number of changes made to this file

	
contents_url

	The API resource to view the raw contents of this file

	
deletions_count

	The number of deletions made to this file

	
filename

	The name of this file

	
patch

	The patch generated by this

Note

If the patch is larger than a specific size it may be missing
from GitHub’s response. The attribute will be set to None
in this case.

	
raw_url

	The API resource to view the raw diff of this file

	
sha

	The SHA of the commit that this file belongs to

	
status

	The string with the status of the file, e.g., ‘added’

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
contents()

	Return the contents of the file.

	Returns

	An object representing the contents of this file

	Return type

	Contents

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Review Objects

	
class github3.pulls.ReviewComment(json, session)

	Object representing review comments left on a pull request.

Please see GitHub’s Pull Comments Documentation [http://developer.github.com/v3/pulls/comments/] for more information.

	
id

	The unique identifier for this comment across all GitHub review
comments.

	
author_association

	The role of the author of this comment on the repository.

	
body

	The Markdown formatted body of this comment.

	
body_html

	The HTML formatted body of this comment.

	
body_text

	The plain text formatted body of this comment.

	
commit_id

	The SHA of current commit this comment was left on.

	
created_at

	A datetime instance representing the date and time
this comment was created.

	
diff_hunk

	A string representation of the hunk of the diff where the comment was
left.

	
html_url

	The URL to view this comment in the webbrowser.

	
links

	A dictionary of relevant URLs usually returned in the _links
attribute.

	
original_commit_id

	The SHA of the original commit this comment was left on.

	
original_position

	The original position within the diff that this comment was left on.

	
pull_request_url

	The URL to retrieve the pull request via the API.

	
updated_at

	A datetime instance representing the date and time
this comment was updated.

	
user

	A ShortUser instance representing the author
of this comment.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this comment.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
edit(body)

	Edit this comment.

	Parameters

	body (str) – (required), new body of the comment, Markdown formatted

	Returns

	True if successful, False otherwise

	Return type

	bool

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
reply(body)

	Reply to this review comment with a new review comment.

	Parameters

	body (str) – The text of the comment.

	Returns

	The created review comment.

	Return type

	ReviewComment

Repository API Objects

This section of the documentation covers the representations of various
objects related to the Repositories API [https://developer.github.com/v3/repos/].

Repository Objects

	
class github3.repos.repo.Repository(json, session)

	This organizes the full representation of a single Repository.

The full representation of a Repository is not returned in collections but
instead in individual requests, e.g.,
repository().

This object has all the same attributes as
ShortRepository as well as:

	
allow_merge_commit

	
Note

This attribute is not guaranteed to be present.

Whether the repository allows creating a merge commit when merging
when a pull request.

	
allow_rebase_merge

	
Note

This attribute is not guaranteed to be present.

Whether the repository allows rebasing when merging a pull request.

	
allow_squash_merge

	
Note

This attribute is not guaranteed to be present.

Whether the repository allows squashing commits when merging a pull
request.

	
archived

	A boolean attribute that describes whether the current repository has
been archived or not.

	
clone_url

	This is the URL that can be used to clone the repository via HTTPS,
e.g., https://github.com/sigmavirus24/github3.py.git.

	
created_at

	A parsed datetime object representing the date the
repository was created.

	
default_branch

	This is the default branch of the repository as configured by its
administrator(s).

	
forks_count

	This is the number of forks of the repository.

	
git_url

	This is the URL that can be used to clone the repository via the Git
protocol, e.g., git://github.com/sigmavirus24/github3.py.

	
has_downloads

	This is a boolean attribute that conveys whether or not the repository
has downloads.

	
has_issues

	This is a boolean attribute that conveys whether or not the repository
has issues.

	
has_pages

	This is a boolean attribute that conveys whether or not the repository
has pages.

	
has_wiki

	This is a boolean attribute that conveys whether or not the repository
has a wiki.

	
homepage

	This is the administrator set homepage URL for the project. This may
not be provided.

	
language

	This is the language GitHub has detected for the repository.

	
original_license

	
Note

When used with a Github Enterprise instance <= 2.12.7, this
attribute will not be returned. To handle these situations
sensitively, the attribute will be set to None.
Repositories may still have a license associated with them
in these cases.

This is the ShortLicense returned as part of
the repository. To retrieve the most recent license, see the
license() method.

	
mirror_url

	The URL that GitHub is mirroring the repository from.

	
network_count

	The size of the repository’s “network”.

	
open_issues_count

	The number of issues currently open on the repository.

	
parent

	A representation of the parent repository as
ShortRepository. If this Repository has
no parent then this will be None.

	
pushed_at

	A parsed datetime object representing the date a
push was last made to the repository.

	
size

	The size of the repository.

	
source

	A representation of the source repository as
ShortRepository. If this Repository has
no source then this will be None.

	
ssh_url

	This is the URL that can be used to clone the repository via the SSH
protocol, e.g., ssh@github.com:sigmavirus24/github3.py.git.

	
stargazers_count

	The number of people who have starred this repository.

	
subscribers_count

	The number of people watching (or who have subscribed to notifications
about) this repository.

	
svn_url

	This is the URL that can be used to clone the repository via SVN,
e.g., ssh@github.com:sigmavirus24/github3.py.git.

	
updated_at

	A parsed datetime object representing the date a
the repository was last updated by its administrator(s).

	
watchers_count

	The number of people watching this repository.

See also: http://developer.github.com/v3/repos/

	
add_collaborator(username)

	Add username as a collaborator to a repository.

	Parameters

	username (str or User) – (required), username of the user

	Returns

	True if successful, False otherwise

	Return type

	

	
archive(format, path=u'', ref=u'master')

	Get the tarball or zipball archive for this repo at ref.

See: http://developer.github.com/v3/repos/contents/#get-archive-link

	Parameters

	
	format (str) – (required), accepted values: (‘tarball’, ‘zipball’)

	path (str, file) – (optional), path where the file should be saved
to, default is the filename provided in the headers and will be
written in the current directory.
it can take a file-like object as well

	ref (str) – (optional)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
asset(id)

	Return a single asset.

	Parameters

	id (int) – (required), id of the asset

	Returns

	the asset

	Return type

	Asset

	
assignees(number=-1, etag=None)

	Iterate over all assignees to which an issue may be assigned.

	Parameters

	
	number (int) – (optional), number of assignees to return. Default:
-1 returns all available assignees

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
blob(sha)

	Get the blob indicated by sha.

	Parameters

	sha (str) – (required), sha of the blob

	Returns

	the git blob

	Return type

	Blob

	
branch(name)

	Get the branch name of this repository.

	Parameters

	name (str) – (required), branch name

	Returns

	the branch

	Return type

	Branch

	
branches(number=-1, protected=False, etag=None)

	Iterate over the branches in this repository.

	Parameters

	
	number (int) – (optional), number of branches to return. Default: -1 returns all
branches

	protected (bool) – (optional), True lists only protected branches.
Default: False

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of branches

	Return type

	Branch

	
code_frequency(number=-1, etag=None)

	Iterate over the code frequency per week.

New in version 0.7.

Returns a weekly aggregate of the number of additions and deletions
pushed to this repository.

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default: -1
returns all weeks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of lists [seconds_from_epoch, additions, deletions]

	Return type

	list

	
collaborators(affiliation=u'all', number=-1, etag=None)

	Iterate over the collaborators of this repository.

	Parameters

	
	affiliation (str) – (optional), affiliation of the collaborator to the repository.
Default: “all” returns contributors with all affiliations

	number (int) – (optional), number of collaborators to return.
Default: -1 returns all comments

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of collaborators

	Return type

	Collaborator

	
comments(number=-1, etag=None)

	Iterate over comments on all commits in the repository.

	Parameters

	
	number (int) – (optional), number of comments to return. Default:
-1 returns all comments

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of comments on commits

	Return type

	RepoComment

	
commit(sha)

	Get a single (repo) commit.

See git_commit() for the Git Data Commit.

	Parameters

	sha (str) – (required), sha of the commit

	Returns

	the commit

	Return type

	RepoCommit

	
commit_activity(number=-1, etag=None)

	Iterate over last year of commit activity by week.

New in version 0.7.

See: http://developer.github.com/v3/repos/statistics/

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default -1
will return all of the weeks.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of dictionaries

	Return type

	dict

	
commit_comment(comment_id)

	Get a single commit comment.

	Parameters

	comment_id (int) – (required), id of the comment used by GitHub

	Returns

	the comment on the commit

	Return type

	RepoComment

	
commits(sha=None, path=None, author=None, number=-1, etag=None, since=None, until=None, per_page=None)

	Iterate over commits in this repository.

	Parameters

	
	sha (str) – (optional), sha or branch to start listing commits from

	path (str) – (optional), commits containing this path will be listed

	author (str) – (optional), GitHub login, real name, or email to
filter commits by (using commit author)

	number (int) – (optional), number of commits to return. Default:
-1 returns all commits

	etag (str) – (optional), ETag from a previous request to the same endpoint

	since (datetime or str) – (optional), Only commits after this date will be returned.
This can be a datetime or an ISO8601 formatted
date string.

	until (datetime or str) – (optional), Only commits before this date will
be returned. This can be a datetime or an ISO8601 formatted
date string.

	per_page (int) – (optional), commits listing page size

	Returns

	generator of commits

	Return type

	RepoCommit

	
compare_commits(base, head)

	Compare two commits.

	Parameters

	
	base (str) – (required), base for the comparison

	head (str) – (required), compare this against base

	Returns

	the comparison of the commits

	Return type

	Comparison

	
contributor_statistics(number=-1, etag=None)

	Iterate over the contributors list.

New in version 0.7.

See also: http://developer.github.com/v3/repos/statistics/

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default -1
will return all of the weeks.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of contributor statistics for each contributor

	Return type

	ContributorStats

	
contributors(anon=False, number=-1, etag=None)

	Iterate over the contributors to this repository.

	Parameters

	
	anon (bool) – (optional), True lists anonymous contributors as well

	number (int) – (optional), number of contributors to return.
Default: -1 returns all contributors

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of contributor users

	Return type

	Contributor

	
create_blob(content, encoding)

	Create a blob with content.

	Parameters

	
	content (str) – (required), content of the blob

	encoding (str) – (required), (‘base64’, ‘utf-8’)

	Returns

	string of the SHA returned

	Returns

	str (on Python 3, unicode on Python 2)

	
create_branch_ref(name, sha=None)

	Create a branch git reference.

This is a shortcut for calling
github3.repos.repo.Repository.create_ref().

	Parameters

	
	branch (str) – (required), the branch to create

	sha (str) – the commit to base the branch from

	Returns

	a reference object representing the branch

	Return type

	Reference

	
create_comment(body, sha, path=None, position=None, line=1)

	Create a comment on a commit.

	Parameters

	
	body (str) – (required), body of the message

	sha (str) – (required), commit id

	path (str) – (optional), relative path of the file to comment on

	position (str) – (optional), line index in the diff to comment on

	line (int) – (optional), line number of the file to comment on, default: 1

	Returns

	the created comment

	Return type

	RepoComment

	
create_commit(message, tree, parents, author=None, committer=None)

	Create a commit on this repository.

	Parameters

	
	message (str) – (required), commit message

	tree (str) – (required), SHA of the tree object this commit points to

	parents (list) – (required), SHAs of the commits that were parents
of this commit. If empty, the commit will be written as the root
commit. Even if there is only one parent, this should be an
array.

	author (dict) – (optional), if omitted, GitHub will
use the authenticated user’s credentials and the current
time. Format: {‘name’: ‘Committer Name’, ‘email’:
‘name@example.com’, ‘date’: ‘YYYY-MM-DDTHH:MM:SS+HH:00’}

	committer (dict) – (optional), if ommitted, GitHub will use the
author parameters. Should be the same format as the author
parameter.

	Returns

	the created commit

	Return type

	Commit

	
create_deployment(ref, required_contexts=None, payload=u'', auto_merge=False, description=u'', environment=None)

	Create a deployment.

	Parameters

	
	ref (str) – (required), The ref to deploy. This can be a branch, tag, or sha.

	required_contexts (list) – Optional array of status contexts
verified against commit status checks. To bypass checking
entirely pass an empty array. Default: []

	payload (str) – Optional JSON payload with extra information about
the deployment. Default: “”

	auto_merge (bool) – Optional parameter to merge the default branch
into the requested deployment branch if necessary. Default: False

	description (str) – Optional short description. Default: “”

	environment (str) – Optional name for the target deployment
environment (e.g., production, staging, qa). Default: “production”

	Returns

	the created deployment

	Return type

	Deployment

	
create_file(path, message, content, branch=None, committer=None, author=None)

	Create a file in this repository.

See also: http://developer.github.com/v3/repos/contents/#create-a-file

	Parameters

	
	path (str) – (required), path of the file in the repository

	message (str) – (required), commit message

	content (bytes) – (required), the actual data in the file

	branch (str) – (optional), branch to create the commit on.
Defaults to the default branch of the repository

	committer (dict) – (optional), if no information is given the
authenticated user’s information will be used. You must specify
both a name and email.

	author (dict) – (optional), if omitted this will be filled in with
committer information. If passed, you must specify both a name and
email.

	Returns

	dictionary of contents and commit for created file

	Return type

	Contents,
Commit

	
create_fork(organization=None)

	Create a fork of this repository.

	Parameters

	organization (str) – (required), login for organization to create the fork under

	Returns

	the fork of this repository

	Return type

	Repository

	
create_hook(name, config, events=[u'push'], active=True)

	Create a hook on this repository.

	Parameters

	
	name (str) – (required), name of the hook

	config (dict) – (required), key-value pairs which act as settings for this hook

	events (list) – (optional), events the hook is triggered for

	active (bool) – (optional), whether the hook is actually triggered

	Returns

	the created hook

	Return type

	Hook

	
create_issue(title, body=None, assignee=None, milestone=None, labels=None, assignees=None)

	Create an issue on this repository.

	Parameters

	
	title (str) – (required), title of the issue

	body (str) – (optional), body of the issue

	assignee (str) – (optional), login of the user to assign the issue to

	milestone (int) – (optional), id number of the milestone to
attribute this issue to (e.g. m is a
Milestone object, m.number
is what you pass here.)

	labels ([str]) – (optional), labels to apply to this issue

	assignees ([str]) – (optional), login of the users to assign the issue to

	Returns

	the created issue

	Return type

	ShortIssue

	
create_key(title, key, read_only=False)

	Create a deploy key.

	Parameters

	
	title (str) – (required), title of key

	key (str) – (required), key text

	read_only (bool) – (optional), restrict key access to read-only, default is False

	Returns

	the created key

	Return type

	Key

	
create_label(name, color, description=None)

	Create a label for this repository.

	Parameters

	
	name (str) – (required), name to give to the label

	color (str) – (required), value of the color to assign to the
label, e.g., ‘#fafafa’ or ‘fafafa’ (the latter is what is sent)

	description (str) – (optional), description to give to the label

	Returns

	the created label

	Return type

	Label

	
create_milestone(title, state=None, description=None, due_on=None)

	Create a milestone for this repository.

	Parameters

	
	title (str) – (required), title of the milestone

	state (str) – (optional), state of the milestone, accepted
values: (‘open’, ‘closed’), default: ‘open’

	description (str) – (optional), description of the milestone

	due_on (str) – (optional), ISO 8601 formatted due date

	Returns

	the created milestone

	Return type

	Milestone

	
create_project(name, body=None)

	Create a project for this repository.

	Parameters

	
	name (str) – (required), name of the project

	body (str) – (optional), body of the project

	Returns

	the created project

	Return type

	Project

	
create_pull(title, base, head, body=None)

	Create a pull request of head onto base branch in this repo.

	Parameters

	
	title (str) – (required)

	base (str) – (required), e.g., ‘master’

	head (str) – (required), e.g., ‘username:branch’

	body (str) – (optional), markdown formatted description

	Returns

	the created pull request

	Return type

	ShortPullRequest

	
create_pull_from_issue(issue, base, head)

	Create a pull request from issue #``issue``.

	Parameters

	
	issue (int) – (required), issue number

	base (str) – (required), e.g., ‘master’

	head (str) – (required), e.g., ‘username:branch’

	Returns

	the created pull request

	Return type

	ShortPullRequest

	
create_ref(ref, sha)

	Create a reference in this repository.

	Parameters

	
	ref (str) – (required), fully qualified name of the reference,
e.g. refs/heads/master. If it doesn’t start with refs and
contain at least two slashes, GitHub’s API will reject it.

	sha (str) – (required), SHA1 value to set the reference to

	Returns

	the created ref

	Return type

	Reference

	
create_release(tag_name, target_commitish=None, name=None, body=None, draft=False, prerelease=False)

	Create a release for this repository.

	Parameters

	
	tag_name (str) – (required), name to give to the tag

	target_commitish (str) – (optional), vague concept of a target, either a SHA or a branch
name.

	name (str) – (optional), name of the release

	body (str) – (optional), description of the release

	draft (bool) – (optional), whether this release is a draft or not

	prerelease (bool) – (optional), whether this is a prerelease or not

	Returns

	the created release

	Return type

	Release

	
create_status(sha, state, target_url=None, description=None, context=u'default')

	Create a status object on a commit.

	Parameters

	
	sha (str) – (required), SHA of the commit to create the status on

	state (str) – (required), state of the test; only the following
are accepted: ‘pending’, ‘success’, ‘error’, ‘failure’

	target_url (str) – (optional), URL to associate with this status.

	description (str) – (optional), short description of the status

	context (str) – (optional), A string label to differentiate this
status from the status of other systems

	Returns

	the created status

	Return type

	Status

	
create_tag(tag, message, sha, obj_type, tagger, lightweight=False)

	Create a tag in this repository.

By default, this method creates an annotated tag. If you wish to
create a lightweight tag instead, pass lightweight=True.

If you are creating an annotated tag, this method makes 2 calls to
the API:

	Creates the tag object

	Creates the reference for the tag

This behaviour is required by the GitHub API.

	Parameters

	
	tag (str) – (required), name of the tag

	message (str) – (required), tag message

	sha (str) – (required), SHA of the git object this is tagging

	obj_type (str) – (required), type of object being tagged, e.g., ‘commit’, ‘tree’,
‘blob’

	tagger (dict) – (required), containing the name, email of the
tagger and the date it was tagged

	lightweight (bool) – (optional), if False, create an annotated
tag, otherwise create a lightweight tag (a Reference).

	Returns

	if creating a lightweight tag, this will return a
Reference, otherwise it will return a
Tag

	Return type

	Tag or Reference

	
create_tree(tree, base_tree=None)

	Create a tree on this repository.

	Parameters

	
	tree (list) – (required), specifies the tree structure.
Format: [{‘path’: ‘path/file’, ‘mode’:
‘filemode’, ‘type’: ‘blob or tree’, ‘sha’: ‘44bfc6d…’}]

	base_tree (str) – (optional), SHA1 of the tree you want to update with new data

	Returns

	the created tree

	Return type

	Tree

	
delete()

	Delete this repository.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
delete_key(key_id)

	Delete the key with the specified id from your deploy keys list.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
delete_subscription()

	Delete the user’s subscription to this repository.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
deployment(id)

	Retrieve the deployment identified by id.

	Parameters

	id (int) – (required), id for deployments.

	Returns

	the deployment

	Return type

	Deployment

	
deployments(number=-1, etag=None)

	Iterate over deployments for this repository.

	Parameters

	
	number (int) – (optional), number of deployments to return.
Default: -1, returns all available deployments

	etag (str) – (optional), ETag from a previous request for all deployments

	Returns

	generator of deployments

	Return type

	Deployment

	
directory_contents(directory_path, ref=None, return_as=<type 'list'>)

	Get the contents of each file in directory_path.

If the path provided is actually a directory, you will receive a
list back of the form:

[('filename.md', Contents(...)),
 ('github.py', Contents(...)),
 # ...
 ('fiz.py', Contents(...))]

You can either then transform it into a dictionary:

contents = dict(repo.directory_contents('path/to/dir/'))

Or you can use the return_as parameter to have it return a
dictionary for you:

contents = repo.directory_contents('path/to/dir/', return_as=dict)

	Parameters

	
	path (str) – (required), path to file, e.g. github3/repos/repo.py

	ref (str) – (optional), the string name of a commit/branch/tag.
Default: master

	return_as – (optional), how to return the directory’s contents.
Default: list

	Returns

	list of tuples of the filename and the Contents returned

	Return type

	[(str, Contents)]

	Raises

	github3.exceptions.UnprocessableResponseBody – When the requested directory is not actually a directory

	
edit(name, description=None, homepage=None, private=None, has_issues=None, has_wiki=None, has_downloads=None, default_branch=None, archived=None, allow_merge_commit=None, allow_squash_merge=None, allow_rebase_merge=None, has_projects=None)

	Edit this repository.

	Parameters

	
	name (str) – (required), name of the repository

	description (str) – (optional), If not None, change the
description for this repository. API default: None - leave
value unchanged.

	homepage (str) – (optional), If not None, change the homepage
for this repository. API default: None - leave value unchanged.

	private (bool) – (optional), If True, make the repository
private. If False, make the repository public. API default:
None - leave value unchanged.

	has_issues (bool) – (optional), If True, enable issues for
this repository. If False, disable issues for this repository.
API default: None - leave value unchanged.

	has_wiki (bool) – (optional), If True, enable the wiki for
this repository. If False, disable the wiki for this
repository. API default: None - leave value unchanged.

	has_downloads (bool) – (optional), If True, enable downloads
for this repository. If False, disable downloads for this
repository. API default: None - leave value unchanged.

	default_branch (str) – (optional), If not None, change the
default branch for this repository. API default: None - leave
value unchanged.

	archived (bool) – (optional), If not None, toggle the archived
attribute on the repository to control whether it is archived or
not.

	allow_rebase_merge (bool) – (optional), If not None, change whether the merge strategy
that allows adding all commits from the head branch onto the base
branch individually is enabled for this repository. API default:
None - leave value unchanged.

	allow_squash_merge (bool) – (optional), If not None, change whether combining all commits
from the head branch into a single commit in the base branch is
allowed. API default: None - leave value unchanged.

	allow_merge_commit (bool) – (optional), If not None, change whether adding all commits
from the head branch to the base branch with a merge commit is
allowed. API default: None - leave value unchanged.

	has_projects (bool) – (optional), If True, enable projects for this repository.
If False, disable projects projects for this repository.
API default: None - leave value unchanged.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1, etag=None)

	Iterate over events on this repository.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of events

	Return type

	Event

	
file_contents(path, ref=None)

	Get the contents of the file pointed to by path.

	Parameters

	
	path (str) – (required), path to file, e.g. github3/repos/repo.py

	ref (str) – (optional), the string name of a commit/branch/tag.
Default: master

	Returns

	the contents of the file requested

	Return type

	Contents

	
forks(sort=u'', number=-1, etag=None)

	Iterate over forks of this repository.

	Parameters

	
	sort (str) – (optional), accepted values:
(‘newest’, ‘oldest’, ‘stargazers’), API default: ‘newest’

	number (int) – (optional), number of forks to return. Default: -1
returns all forks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of forks of this repository

	Return type

	ShortRepository

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
git_commit(sha)

	Get a single (git) commit.

	Parameters

	sha (str) – (required), sha of the commit

	Returns

	the single commit data from git

	Return type

	Commit

	
hook(hook_id)

	Get a single hook.

	Parameters

	hook_id (int) – (required), id of the hook

	Returns

	the hook

	Return type

	Hook

	
hooks(number=-1, etag=None)

	Iterate over hooks registered on this repository.

	Parameters

	
	number (int) – (optional), number of hoks to return. Default: -1
returns all hooks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of hooks

	Return type

	Hook

	
ignore()

	Ignore notifications from this repository for the user.

New in version 1.0.

This replaces Repository#set_subscription.

	Returns

	the new repository subscription

	Return type

	:class:~github3.notifications.RepositorySubscription`

	
import_issue(title, body, created_at, assignee=None, milestone=None, closed=None, labels=None, comments=None)

	Import an issue into the repository.

See also: https://gist.github.com/jonmagic/5282384165e0f86ef105

	Parameters

	
	title (string) – (required) Title of issue

	body (string) – (required) Body of issue

	created_at (datetime or str) – (required) Creation timestamp

	assignee (string) – (optional) Username to assign issue to

	milestone (int) – (optional) Milestone ID

	closed (boolean) – (optional) Status of issue is Closed if True

	labels (list) – (optional) List of labels containing string names

	comments (list) – (optional) List of dictionaries which contain
created_at and body attributes

	Returns

	the imported issue

	Return type

	ImportedIssue

	
imported_issue(imported_issue_id)

	Retrieve imported issue specified by imported issue id.

	Parameters

	imported_issue_id (int) – (required) id of imported issue

	Returns

	the imported issue

	Return type

	ImportedIssue

	
imported_issues(number=-1, since=None, etag=None)

	Retrieve the collection of imported issues via the API.

See also: https://gist.github.com/jonmagic/5282384165e0f86ef105

	Parameters

	
	number (int) – (optional), number of imported issues to return.
Default: -1 returns all branches

	since – (optional), Only imported issues after this date will
be returned. This can be a datetime instance, ISO8601
formatted date string, or a string formatted like so:
2016-02-04 i.e. %Y-%m-%d

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of imported issues

	Return type

	ImportedIssue

	
invitations(number=-1, etag=None)

	Iterate over the invitations to this repository.

	Parameters

	
	number (int) – (optional), number of invitations to return. Default: -1 returns
all available invitations

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repository invitation objects

	Return type

	Invitation

	
is_assignee(username)

	Check if the user can be assigned an issue on this repository.

	Parameters

	username (str or User) – name of the user to check

	Returns

	bool

	
is_collaborator(username)

	Check to see if username is a collaborator on this repository.

	Parameters

	username (str or User) – (required), login for the user

	Returns

	True if successful, False otherwise

	Return type

	bool

	
issue(number)

	Get the issue specified by number.

	Parameters

	number (int) – (required), number of the issue on this repository

	Returns

	the issue

	Return type

	Issue

	
issue_events(number=-1, etag=None)

	Iterate over issue events on this repository.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events on issues

	Return type

	IssueEvent

	
issues(milestone=None, state=None, assignee=None, mentioned=None, labels=None, sort=None, direction=None, since=None, number=-1, etag=None)

	Iterate over issues on this repo based upon parameters passed.

Changed in version 0.9.0: The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	milestone (int) – (optional), ‘none’, or ‘*’

	state (str) – (optional), accepted values: (‘all’, ‘open’, ‘closed’)

	assignee (str) – (optional), ‘none’, ‘*’, or login name

	mentioned (str) – (optional), user’s login name

	labels (str) – (optional), comma-separated list of labels, e.g. ‘bug,ui,@high’

	sort – (optional), accepted values:
(‘created’, ‘updated’, ‘comments’, ‘created’)

	direction (str) – (optional), accepted values: (‘asc’, ‘desc’)

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), Number of issues to return.
By default all issues are returned

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
key(id_num)

	Get the specified deploy key.

	Parameters

	id_num (int) – (required), id of the key

	Returns

	the deploy key

	Return type

	Key

	
keys(number=-1, etag=None)

	Iterate over deploy keys on this repository.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of keys

	Return type

	Key

	
label(name)

	Get the label specified by name.

	Parameters

	name (str) – (required), name of the label

	Returns

	the label

	Return type

	Label

	
labels(number=-1, etag=None)

	Iterate over labels on this repository.

	Parameters

	
	number (int) – (optional), number of labels to return. Default: -1
returns all available labels

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of labels

	Return type

	Label

	
languages(number=-1, etag=None)

	Iterate over the programming languages used in the repository.

	Parameters

	
	number (int) – (optional), number of languages to return. Default:
-1 returns all used languages

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of tuples

	Return type

	tuple

	
latest_pages_build()

	Get the build information for the most recent Pages build.

	Returns

	the information for the most recent build

	Return type

	PagesBuild

	
latest_release()

	Get the latest release.

Draft releases and prereleases are not returned by this endpoint.

	Returns

	the release

	Return type

	Release

	
license()

	Get the contents of a license for the repo.

	Returns

	the license

	Return type

	RepositoryLicense

	
mark_notifications(last_read=u'')

	Mark all notifications in this repository as read.

	Parameters

	last_read (str) – (optional), Describes the last point that
notifications were checked. Anything updated since this time will
not be updated. Default: Now. Expected in ISO 8601 format:
YYYY-MM-DDTHH:MM:SSZ. Example: “2012-10-09T23:39:01Z”.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
merge(base, head, message=u'')

	Perform a merge from head into base.

	Parameters

	
	base (str) – (required), where you’re merging into

	head (str) – (required), where you’re merging from

	message (str) – (optional), message to be used for the commit

	Returns

	the commit resulting from the merge

	Return type

	RepoCommit

	
milestone(number)

	Get the milestone indicated by number.

	Parameters

	number (int) – (required), unique id number of the milestone

	Returns

	the milestone

	Return type

	Milestone

	
milestones(state=None, sort=None, direction=None, number=-1, etag=None)

	Iterate over the milestones on this repository.

	Parameters

	
	state (str) – (optional), state of the milestones, accepted
values: (‘open’, ‘closed’)

	sort (str) – (optional), how to sort the milestones, accepted
values: (‘due_date’, ‘completeness’)

	direction (str) – (optional), direction to sort the milestones,
accepted values: (‘asc’, ‘desc’)

	number (int) – (optional), number of milestones to return.
Default: -1 returns all milestones

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of milestones

	Return type

	Milestone

	
network_events(number=-1, etag=None)

	Iterate over events on a network of repositories.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of events

	Return type

	Event

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
notifications(all=False, participating=False, since=None, number=-1, etag=None)

	Iterate over the notifications for this repository.

	Parameters

	
	all (bool) – (optional), show all notifications, including ones
marked as read

	participating (bool) – (optional), show only the notifications the
user is participating in directly

	since (datetime or str) – (optional), filters out any notifications updated
before the given time. This can be a datetime or an ISO8601
formatted date string, e.g., 2012-05-20T23:10:27Z

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of notification threads

	Return type

	Thread

	
pages()

	Get information about this repository’s pages site.

	Returns

	information about this repository’s GitHub pages site

	Return type

	PagesInfo

	
pages_builds(number=-1, etag=None)

	Iterate over pages builds of this repository.

	Parameters

	
	number (int) – (optional) the number of builds to return

	etag (str) – (optional), ETag value from a previous request

	Returns

	generator of builds

	Return type

	PagesBuild

	
project(id, etag=None)

	Return the organization project with the given ID.

	Parameters

	id (int) – (required), ID number of the project

	Returns

	the project

	Return type

	Project

	
projects(number=-1, etag=None)

	Iterate over projects for this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default:
-1 will return all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of projects

	Return type

	Project

	
pull_request(number)

	Get the pull request indicated by number.

	Parameters

	number (int) – (required), number of the pull request.

	Returns

	the pull request

	Return type

	PullRequest

	
pull_requests(state=None, head=None, base=None, sort=u'created', direction=u'desc', number=-1, etag=None)

	List pull requests on repository.

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	The sort parameter was added.

	The direction parameter was added.

	Parameters

	
	state (str) – (optional), accepted values: (‘all’, ‘open’, ‘closed’)

	head (str) – (optional), filters pulls by head user and branch
name in the format user:ref-name, e.g., seveas:debian

	base (str) – (optional), filter pulls by base branch name.
Example: develop.

	sort (str) – (optional), Sort pull requests by created,
updated, popularity, long-running. Default: ‘created’

	direction (str) – (optional), Choose the direction to list pull
requests. Accepted values: (‘desc’, ‘asc’). Default: ‘desc’

	number (int) – (optional), number of pulls to return. Default: -1
returns all available pull requests

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of pull requests

	Return type

	ShortPullRequest

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
readme()

	Get the README for this repository.

	Returns

	this repository’s readme

	Return type

	Contents

	
ref(ref)

	Get a reference pointed to by ref.

The most common will be branches and tags. For a branch, you must
specify ‘heads/branchname’ and for a tag, ‘tags/tagname’. Essentially,
the system should return any reference you provide it in the namespace,
including notes and stashes (provided they exist on the server).

	Parameters

	ref (str) – (required)

	Returns

	the reference

	Return type

	Reference

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
refs(subspace=u'', number=-1, etag=None)

	Iterate over references for this repository.

	Parameters

	
	subspace (str) – (optional), e.g. ‘tags’, ‘stashes’, ‘notes’

	number (int) – (optional), number of refs to return. Default: -1
returns all available refs

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of references

	Return type

	Reference

	
release(id)

	Get a single release.

	Parameters

	id (int) – (required), id of release

	Returns

	the release

	Return type

	Release

	
release_from_tag(tag_name)

	Get a release by tag name.

release_from_tag() returns a release with specified tag
while release() returns a release with specified release id

	Parameters

	tag_name (str) – (required) name of tag

	Returns

	the release

	Return type

	Release

	
releases(number=-1, etag=None)

	Iterate over releases for this repository.

	Parameters

	
	number (int) – (optional), number of refs to return. Default: -1
returns all available refs

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of releases

	Return type

	Release

	
remove_collaborator(username)

	Remove collaborator username from the repository.

	Parameters

	username (str or User) – (required), login name of the collaborator

	Returns

	True if successful, False otherwise

	Return type

	bool

	
replace_topics(new_topics)

	Replace the repository topics with new_topics.

	Parameters

	topics (list) – (required), new topics of the repository

	Returns

	new topics of the repository

	Return type

	Topics

	
stargazers(number=-1, etag=None)

	List users who have starred this repository.

	Parameters

	
	number (int) – (optional), number of stargazers to return.
Default: -1 returns all subscribers available

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
statuses(sha, number=-1, etag=None)

	Iterate over the statuses for a specific SHA.

Warning

Deprecated in v1.0. Also deprecated upstream
https://developer.github.com/v3/repos/statuses/

	Parameters

	
	sha (str) – SHA of the commit to list the statuses of

	number (int) – (optional), return up to number statuses. Default:
-1 returns all available statuses.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of statuses

	Return type

	Status

	
subscribe()

	Subscribe the user to this repository’s notifications.

New in version 1.0.

This replaces Repository#set_subscription

	Parameters

	
	subscribed (bool) – (required), determines if notifications should
be received from this repository.

	ignored (bool) – (required), determines if notifications should be
ignored from this repository.

	Returns

	the new repository subscription

	Return type

	RepositorySubscription

	
subscribers(number=-1, etag=None)

	Iterate over users subscribed to this repository.

	Parameters

	
	number (int) – (optional), number of subscribers to return.
Default: -1 returns all subscribers available

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users subscribed to this repository

	Return type

	ShortUser

	
subscription()

	Return subscription for this Repository.

	Returns

	the user’s subscription to this repository

	Return type

	RepositorySubscription

	
tag(sha)

	Get an annotated tag.

http://learn.github.com/p/tagging.html

	Parameters

	sha (str) – (required), sha of the object for this tag

	Returns

	the annotated tag

	Return type

	Tag

	
tags(number=-1, etag=None)

	Iterate over tags on this repository.

	Parameters

	
	number (int) – (optional), return up to at most number tags.
Default: -1 returns all available tags.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of tags with GitHub repository specific information

	Return type

	RepoTag

	
teams(number=-1, etag=None)

	Iterate over teams with access to this repository.

	Parameters

	
	number (int) – (optional), return up to number Teams. Default: -1
returns all Teams.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of teams

	Return type

	Team

	
topics()

	Get the topics of this repository.

	Returns

	this repository’s topics

	Return type

	Topics

	
tree(sha, recursive=False)

	Get a tree.

	Parameters

	
	sha (str) – (required), sha of the object for this tree

	recursive (bool) – (optional), whether to fetch the tree recursively

	Returns

	the tree

	Return type

	Tree

	
weekly_commit_count()

	Retrieve the total commit counts.

Note

All statistics methods may return a 202. If github3.py
receives a 202 in this case, it will return an emtpy dictionary.
You should give the API a moment to compose the data and then re
-request it via this method.

..versionadded:: 0.7

The dictionary returned has two entries: all and owner. Each
has a fifty-two element long list of commit counts. (Note: all
includes the owner.) d['all'][0] will be the oldest week,
d['all'][51] will be the most recent.

	Returns

	the commit count as a dictionary

	Return type

	dict

	
class github3.repos.repo.ShortRepository(json, session)

	This represents a Repository object returned in collections.

GitHub’s API returns different amounts of information about repositories
based upon how that information is retrieved. This object exists to
represent the full amount of information returned for a specific
repository. For example, you would receive this class when calling
repository(). To provide a clear distinction
between the types of repositories, github3.py uses different classes with
different sets of attributes.

This object only has the following attributes:

	
url

	The GitHub API URL for this repository, e.g.,
https://api.github.com/repos/sigmavirus24/github3.py.

	
archive_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
archive_urlt.variables for the list of variables that can
be passed to archive_urlt.expand().

	
assignees_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
assignees_urlt.variables for the list of variables that can
be passed to assignees_urlt.expand().

	
blobs_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
blobs_urlt.variables for the list of variables that can
be passed to blobs_urlt.expand().

	
branches_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
branches_urlt.variables for the list of variables that can
be passed to branches_urlt.expand().

	
collaborators_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
collaborators_urlt.variables for the list of variables that can
be passed to collaborators_urlt.expand().

	
comments_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
comments_urlt.variables for the list of variables that can
be passed to comments_urlt.expand().

	
commits_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
commits_urlt.variables for the list of variables that can
be passed to commits_urlt.expand().

	
compare_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
compare_urlt.variables for the list of variables that can
be passed to compare_urlt.expand().

	
contents_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
contents_urlt.variables for the list of variables that can
be passed to contents_urlt.expand().

	
contributors_url

	The URL to retrieve this repository’s list of contributors.

	
deployments_url

	The URL to retrieve this repository’s list of deployments.

	
description

	The administrator created description of the repository.

	
downloads_url

	The URL to retrieve this repository’s list of downloads.

	
events_url

	The URL to retrieve this repository’s list of events.

	
fork

	Whether or not this repository is a fork of another.

	
forks_url

	The URL to retrieve this repository’s list of forks.

	
full_name

	The full name of this repository, e.g., sigmavirus24/github3.py.

	
git_commits_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
git_commits_urlt.variables for the list of variables that can
be passed to git_commits_urlt.expand().

	
git_refs_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
git_refs_urlt.variables for the list of variables that can
be passed to git_refs_urlt.expand().

	
git_tags_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
git_tags_urlt.variables for the list of variables that can
be passed to git_tags_urlt.expand().

	
hooks_url

	The URL to retrieve this repository’s list of hooks.

	
html_url

	The HTML URL of this repository, e.g.,
https://github.com/sigmavirus24/github3.py.

	
id

	The unique GitHub assigned numerical id of this repository.

	
issue_comment_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
issue_comment_urlt.variables for the list of variables that can
be passed to issue_comment_urlt.expand().

	
issue_events_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
issue_events_urlt.variables for the list of variables that can
be passed to issue_events_urlt.expand().

	
issues_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
issues_urlt.variables for the list of variables that can
be passed to issues_urlt.expand().

	
keys_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
keys_urlt.variables for the list of variables that can
be passed to keys_urlt.expand().

	
labels_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
labels_urlt.variables for the list of variables that can
be passed to labels_urlt.expand().

	
languages_url

	The URL to retrieve this repository’s list of languages.

	
merges_url

	The URL to retrieve this repository’s list of merges.

	
milestones_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
milestones_urlt.variables for the list of variables that can
be passed to milestones_urlt.expand().

	
name

	The name of the repository, e.g., github3.py.

	
notifications_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
notifications_urlt.variables for the list of variables that can
be passed to notifications_urlt.expand().

	
owner

	The owner of the repository, e.g., sigmavirus24.

	
private

	Whether the repository is private or public.

	
pulls_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
pulls_urlt.variables for the list of variables that can
be passed to pulls_urlt.expand().

	
releases_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
releases_urlt.variables for the list of variables that can
be passed to releases_urlt.expand().

	
stargazers_url

	The URL to retrieve this repository’s list of stargazers.

	
statuses_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
statuses_urlt.variables for the list of variables that can
be passed to statuses_urlt.expand().

	
subscribers_url

	The URL to retrieve this repository’s list of subscribers.

	
subscription_url

	The URL to modify subscription to this repository.

	
tags_url

	The URL to retrieve this repository’s list of tags.

	
teams_url

	The URL to retrieve this repository’s list of teams.

	
trees_urlt

	The URITemplate object representing the
URI template returned by GitHub’s API. Check
trees_urlt.variables for the list of variables that can
be passed to trees_urlt.expand().

New in version 1.0.0.

	
add_collaborator(username)

	Add username as a collaborator to a repository.

	Parameters

	username (str or User) – (required), username of the user

	Returns

	True if successful, False otherwise

	Return type

	

	
archive(format, path=u'', ref=u'master')

	Get the tarball or zipball archive for this repo at ref.

See: http://developer.github.com/v3/repos/contents/#get-archive-link

	Parameters

	
	format (str) – (required), accepted values: (‘tarball’, ‘zipball’)

	path (str, file) – (optional), path where the file should be saved
to, default is the filename provided in the headers and will be
written in the current directory.
it can take a file-like object as well

	ref (str) – (optional)

	Returns

	True if successful, False otherwise

	Return type

	bool

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
asset(id)

	Return a single asset.

	Parameters

	id (int) – (required), id of the asset

	Returns

	the asset

	Return type

	Asset

	
assignees(number=-1, etag=None)

	Iterate over all assignees to which an issue may be assigned.

	Parameters

	
	number (int) – (optional), number of assignees to return. Default:
-1 returns all available assignees

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
blob(sha)

	Get the blob indicated by sha.

	Parameters

	sha (str) – (required), sha of the blob

	Returns

	the git blob

	Return type

	Blob

	
branch(name)

	Get the branch name of this repository.

	Parameters

	name (str) – (required), branch name

	Returns

	the branch

	Return type

	Branch

	
branches(number=-1, protected=False, etag=None)

	Iterate over the branches in this repository.

	Parameters

	
	number (int) – (optional), number of branches to return. Default: -1 returns all
branches

	protected (bool) – (optional), True lists only protected branches.
Default: False

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of branches

	Return type

	Branch

	
code_frequency(number=-1, etag=None)

	Iterate over the code frequency per week.

New in version 0.7.

Returns a weekly aggregate of the number of additions and deletions
pushed to this repository.

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default: -1
returns all weeks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of lists [seconds_from_epoch, additions, deletions]

	Return type

	list

	
collaborators(affiliation=u'all', number=-1, etag=None)

	Iterate over the collaborators of this repository.

	Parameters

	
	affiliation (str) – (optional), affiliation of the collaborator to the repository.
Default: “all” returns contributors with all affiliations

	number (int) – (optional), number of collaborators to return.
Default: -1 returns all comments

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of collaborators

	Return type

	Collaborator

	
comments(number=-1, etag=None)

	Iterate over comments on all commits in the repository.

	Parameters

	
	number (int) – (optional), number of comments to return. Default:
-1 returns all comments

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of comments on commits

	Return type

	RepoComment

	
commit(sha)

	Get a single (repo) commit.

See git_commit() for the Git Data Commit.

	Parameters

	sha (str) – (required), sha of the commit

	Returns

	the commit

	Return type

	RepoCommit

	
commit_activity(number=-1, etag=None)

	Iterate over last year of commit activity by week.

New in version 0.7.

See: http://developer.github.com/v3/repos/statistics/

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default -1
will return all of the weeks.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of dictionaries

	Return type

	dict

	
commit_comment(comment_id)

	Get a single commit comment.

	Parameters

	comment_id (int) – (required), id of the comment used by GitHub

	Returns

	the comment on the commit

	Return type

	RepoComment

	
commits(sha=None, path=None, author=None, number=-1, etag=None, since=None, until=None, per_page=None)

	Iterate over commits in this repository.

	Parameters

	
	sha (str) – (optional), sha or branch to start listing commits from

	path (str) – (optional), commits containing this path will be listed

	author (str) – (optional), GitHub login, real name, or email to
filter commits by (using commit author)

	number (int) – (optional), number of commits to return. Default:
-1 returns all commits

	etag (str) – (optional), ETag from a previous request to the same endpoint

	since (datetime or str) – (optional), Only commits after this date will be returned.
This can be a datetime or an ISO8601 formatted
date string.

	until (datetime or str) – (optional), Only commits before this date will
be returned. This can be a datetime or an ISO8601 formatted
date string.

	per_page (int) – (optional), commits listing page size

	Returns

	generator of commits

	Return type

	RepoCommit

	
compare_commits(base, head)

	Compare two commits.

	Parameters

	
	base (str) – (required), base for the comparison

	head (str) – (required), compare this against base

	Returns

	the comparison of the commits

	Return type

	Comparison

	
contributor_statistics(number=-1, etag=None)

	Iterate over the contributors list.

New in version 0.7.

See also: http://developer.github.com/v3/repos/statistics/

Note

All statistics methods may return a 202. On those occasions,
you will not receive any objects. You should store your
iterator and check the new last_status attribute. If it
is a 202 you should wait before re-requesting.

	Parameters

	
	number (int) – (optional), number of weeks to return. Default -1
will return all of the weeks.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of contributor statistics for each contributor

	Return type

	ContributorStats

	
contributors(anon=False, number=-1, etag=None)

	Iterate over the contributors to this repository.

	Parameters

	
	anon (bool) – (optional), True lists anonymous contributors as well

	number (int) – (optional), number of contributors to return.
Default: -1 returns all contributors

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of contributor users

	Return type

	Contributor

	
create_blob(content, encoding)

	Create a blob with content.

	Parameters

	
	content (str) – (required), content of the blob

	encoding (str) – (required), (‘base64’, ‘utf-8’)

	Returns

	string of the SHA returned

	Returns

	str (on Python 3, unicode on Python 2)

	
create_branch_ref(name, sha=None)

	Create a branch git reference.

This is a shortcut for calling
github3.repos.repo.Repository.create_ref().

	Parameters

	
	branch (str) – (required), the branch to create

	sha (str) – the commit to base the branch from

	Returns

	a reference object representing the branch

	Return type

	Reference

	
create_comment(body, sha, path=None, position=None, line=1)

	Create a comment on a commit.

	Parameters

	
	body (str) – (required), body of the message

	sha (str) – (required), commit id

	path (str) – (optional), relative path of the file to comment on

	position (str) – (optional), line index in the diff to comment on

	line (int) – (optional), line number of the file to comment on, default: 1

	Returns

	the created comment

	Return type

	RepoComment

	
create_commit(message, tree, parents, author=None, committer=None)

	Create a commit on this repository.

	Parameters

	
	message (str) – (required), commit message

	tree (str) – (required), SHA of the tree object this commit points to

	parents (list) – (required), SHAs of the commits that were parents
of this commit. If empty, the commit will be written as the root
commit. Even if there is only one parent, this should be an
array.

	author (dict) – (optional), if omitted, GitHub will
use the authenticated user’s credentials and the current
time. Format: {‘name’: ‘Committer Name’, ‘email’:
‘name@example.com’, ‘date’: ‘YYYY-MM-DDTHH:MM:SS+HH:00’}

	committer (dict) – (optional), if ommitted, GitHub will use the
author parameters. Should be the same format as the author
parameter.

	Returns

	the created commit

	Return type

	Commit

	
create_deployment(ref, required_contexts=None, payload=u'', auto_merge=False, description=u'', environment=None)

	Create a deployment.

	Parameters

	
	ref (str) – (required), The ref to deploy. This can be a branch, tag, or sha.

	required_contexts (list) – Optional array of status contexts
verified against commit status checks. To bypass checking
entirely pass an empty array. Default: []

	payload (str) – Optional JSON payload with extra information about
the deployment. Default: “”

	auto_merge (bool) – Optional parameter to merge the default branch
into the requested deployment branch if necessary. Default: False

	description (str) – Optional short description. Default: “”

	environment (str) – Optional name for the target deployment
environment (e.g., production, staging, qa). Default: “production”

	Returns

	the created deployment

	Return type

	Deployment

	
create_file(path, message, content, branch=None, committer=None, author=None)

	Create a file in this repository.

See also: http://developer.github.com/v3/repos/contents/#create-a-file

	Parameters

	
	path (str) – (required), path of the file in the repository

	message (str) – (required), commit message

	content (bytes) – (required), the actual data in the file

	branch (str) – (optional), branch to create the commit on.
Defaults to the default branch of the repository

	committer (dict) – (optional), if no information is given the
authenticated user’s information will be used. You must specify
both a name and email.

	author (dict) – (optional), if omitted this will be filled in with
committer information. If passed, you must specify both a name and
email.

	Returns

	dictionary of contents and commit for created file

	Return type

	Contents,
Commit

	
create_fork(organization=None)

	Create a fork of this repository.

	Parameters

	organization (str) – (required), login for organization to create the fork under

	Returns

	the fork of this repository

	Return type

	Repository

	
create_hook(name, config, events=[u'push'], active=True)

	Create a hook on this repository.

	Parameters

	
	name (str) – (required), name of the hook

	config (dict) – (required), key-value pairs which act as settings for this hook

	events (list) – (optional), events the hook is triggered for

	active (bool) – (optional), whether the hook is actually triggered

	Returns

	the created hook

	Return type

	Hook

	
create_issue(title, body=None, assignee=None, milestone=None, labels=None, assignees=None)

	Create an issue on this repository.

	Parameters

	
	title (str) – (required), title of the issue

	body (str) – (optional), body of the issue

	assignee (str) – (optional), login of the user to assign the issue to

	milestone (int) – (optional), id number of the milestone to
attribute this issue to (e.g. m is a
Milestone object, m.number
is what you pass here.)

	labels ([str]) – (optional), labels to apply to this issue

	assignees ([str]) – (optional), login of the users to assign the issue to

	Returns

	the created issue

	Return type

	ShortIssue

	
create_key(title, key, read_only=False)

	Create a deploy key.

	Parameters

	
	title (str) – (required), title of key

	key (str) – (required), key text

	read_only (bool) – (optional), restrict key access to read-only, default is False

	Returns

	the created key

	Return type

	Key

	
create_label(name, color, description=None)

	Create a label for this repository.

	Parameters

	
	name (str) – (required), name to give to the label

	color (str) – (required), value of the color to assign to the
label, e.g., ‘#fafafa’ or ‘fafafa’ (the latter is what is sent)

	description (str) – (optional), description to give to the label

	Returns

	the created label

	Return type

	Label

	
create_milestone(title, state=None, description=None, due_on=None)

	Create a milestone for this repository.

	Parameters

	
	title (str) – (required), title of the milestone

	state (str) – (optional), state of the milestone, accepted
values: (‘open’, ‘closed’), default: ‘open’

	description (str) – (optional), description of the milestone

	due_on (str) – (optional), ISO 8601 formatted due date

	Returns

	the created milestone

	Return type

	Milestone

	
create_project(name, body=None)

	Create a project for this repository.

	Parameters

	
	name (str) – (required), name of the project

	body (str) – (optional), body of the project

	Returns

	the created project

	Return type

	Project

	
create_pull(title, base, head, body=None)

	Create a pull request of head onto base branch in this repo.

	Parameters

	
	title (str) – (required)

	base (str) – (required), e.g., ‘master’

	head (str) – (required), e.g., ‘username:branch’

	body (str) – (optional), markdown formatted description

	Returns

	the created pull request

	Return type

	ShortPullRequest

	
create_pull_from_issue(issue, base, head)

	Create a pull request from issue #``issue``.

	Parameters

	
	issue (int) – (required), issue number

	base (str) – (required), e.g., ‘master’

	head (str) – (required), e.g., ‘username:branch’

	Returns

	the created pull request

	Return type

	ShortPullRequest

	
create_ref(ref, sha)

	Create a reference in this repository.

	Parameters

	
	ref (str) – (required), fully qualified name of the reference,
e.g. refs/heads/master. If it doesn’t start with refs and
contain at least two slashes, GitHub’s API will reject it.

	sha (str) – (required), SHA1 value to set the reference to

	Returns

	the created ref

	Return type

	Reference

	
create_release(tag_name, target_commitish=None, name=None, body=None, draft=False, prerelease=False)

	Create a release for this repository.

	Parameters

	
	tag_name (str) – (required), name to give to the tag

	target_commitish (str) – (optional), vague concept of a target, either a SHA or a branch
name.

	name (str) – (optional), name of the release

	body (str) – (optional), description of the release

	draft (bool) – (optional), whether this release is a draft or not

	prerelease (bool) – (optional), whether this is a prerelease or not

	Returns

	the created release

	Return type

	Release

	
create_status(sha, state, target_url=None, description=None, context=u'default')

	Create a status object on a commit.

	Parameters

	
	sha (str) – (required), SHA of the commit to create the status on

	state (str) – (required), state of the test; only the following
are accepted: ‘pending’, ‘success’, ‘error’, ‘failure’

	target_url (str) – (optional), URL to associate with this status.

	description (str) – (optional), short description of the status

	context (str) – (optional), A string label to differentiate this
status from the status of other systems

	Returns

	the created status

	Return type

	Status

	
create_tag(tag, message, sha, obj_type, tagger, lightweight=False)

	Create a tag in this repository.

By default, this method creates an annotated tag. If you wish to
create a lightweight tag instead, pass lightweight=True.

If you are creating an annotated tag, this method makes 2 calls to
the API:

	Creates the tag object

	Creates the reference for the tag

This behaviour is required by the GitHub API.

	Parameters

	
	tag (str) – (required), name of the tag

	message (str) – (required), tag message

	sha (str) – (required), SHA of the git object this is tagging

	obj_type (str) – (required), type of object being tagged, e.g., ‘commit’, ‘tree’,
‘blob’

	tagger (dict) – (required), containing the name, email of the
tagger and the date it was tagged

	lightweight (bool) – (optional), if False, create an annotated
tag, otherwise create a lightweight tag (a Reference).

	Returns

	if creating a lightweight tag, this will return a
Reference, otherwise it will return a
Tag

	Return type

	Tag or Reference

	
create_tree(tree, base_tree=None)

	Create a tree on this repository.

	Parameters

	
	tree (list) – (required), specifies the tree structure.
Format: [{‘path’: ‘path/file’, ‘mode’:
‘filemode’, ‘type’: ‘blob or tree’, ‘sha’: ‘44bfc6d…’}]

	base_tree (str) – (optional), SHA1 of the tree you want to update with new data

	Returns

	the created tree

	Return type

	Tree

	
delete()

	Delete this repository.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
delete_key(key_id)

	Delete the key with the specified id from your deploy keys list.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
delete_subscription()

	Delete the user’s subscription to this repository.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
deployment(id)

	Retrieve the deployment identified by id.

	Parameters

	id (int) – (required), id for deployments.

	Returns

	the deployment

	Return type

	Deployment

	
deployments(number=-1, etag=None)

	Iterate over deployments for this repository.

	Parameters

	
	number (int) – (optional), number of deployments to return.
Default: -1, returns all available deployments

	etag (str) – (optional), ETag from a previous request for all deployments

	Returns

	generator of deployments

	Return type

	Deployment

	
directory_contents(directory_path, ref=None, return_as=<type 'list'>)

	Get the contents of each file in directory_path.

If the path provided is actually a directory, you will receive a
list back of the form:

[('filename.md', Contents(...)),
 ('github.py', Contents(...)),
 # ...
 ('fiz.py', Contents(...))]

You can either then transform it into a dictionary:

contents = dict(repo.directory_contents('path/to/dir/'))

Or you can use the return_as parameter to have it return a
dictionary for you:

contents = repo.directory_contents('path/to/dir/', return_as=dict)

	Parameters

	
	path (str) – (required), path to file, e.g. github3/repos/repo.py

	ref (str) – (optional), the string name of a commit/branch/tag.
Default: master

	return_as – (optional), how to return the directory’s contents.
Default: list

	Returns

	list of tuples of the filename and the Contents returned

	Return type

	[(str, Contents)]

	Raises

	github3.exceptions.UnprocessableResponseBody – When the requested directory is not actually a directory

	
edit(name, description=None, homepage=None, private=None, has_issues=None, has_wiki=None, has_downloads=None, default_branch=None, archived=None, allow_merge_commit=None, allow_squash_merge=None, allow_rebase_merge=None, has_projects=None)

	Edit this repository.

	Parameters

	
	name (str) – (required), name of the repository

	description (str) – (optional), If not None, change the
description for this repository. API default: None - leave
value unchanged.

	homepage (str) – (optional), If not None, change the homepage
for this repository. API default: None - leave value unchanged.

	private (bool) – (optional), If True, make the repository
private. If False, make the repository public. API default:
None - leave value unchanged.

	has_issues (bool) – (optional), If True, enable issues for
this repository. If False, disable issues for this repository.
API default: None - leave value unchanged.

	has_wiki (bool) – (optional), If True, enable the wiki for
this repository. If False, disable the wiki for this
repository. API default: None - leave value unchanged.

	has_downloads (bool) – (optional), If True, enable downloads
for this repository. If False, disable downloads for this
repository. API default: None - leave value unchanged.

	default_branch (str) – (optional), If not None, change the
default branch for this repository. API default: None - leave
value unchanged.

	archived (bool) – (optional), If not None, toggle the archived
attribute on the repository to control whether it is archived or
not.

	allow_rebase_merge (bool) – (optional), If not None, change whether the merge strategy
that allows adding all commits from the head branch onto the base
branch individually is enabled for this repository. API default:
None - leave value unchanged.

	allow_squash_merge (bool) – (optional), If not None, change whether combining all commits
from the head branch into a single commit in the base branch is
allowed. API default: None - leave value unchanged.

	allow_merge_commit (bool) – (optional), If not None, change whether adding all commits
from the head branch to the base branch with a merge commit is
allowed. API default: None - leave value unchanged.

	has_projects (bool) – (optional), If True, enable projects for this repository.
If False, disable projects projects for this repository.
API default: None - leave value unchanged.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
events(number=-1, etag=None)

	Iterate over events on this repository.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of events

	Return type

	Event

	
file_contents(path, ref=None)

	Get the contents of the file pointed to by path.

	Parameters

	
	path (str) – (required), path to file, e.g. github3/repos/repo.py

	ref (str) – (optional), the string name of a commit/branch/tag.
Default: master

	Returns

	the contents of the file requested

	Return type

	Contents

	
forks(sort=u'', number=-1, etag=None)

	Iterate over forks of this repository.

	Parameters

	
	sort (str) – (optional), accepted values:
(‘newest’, ‘oldest’, ‘stargazers’), API default: ‘newest’

	number (int) – (optional), number of forks to return. Default: -1
returns all forks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of forks of this repository

	Return type

	ShortRepository

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
git_commit(sha)

	Get a single (git) commit.

	Parameters

	sha (str) – (required), sha of the commit

	Returns

	the single commit data from git

	Return type

	Commit

	
hook(hook_id)

	Get a single hook.

	Parameters

	hook_id (int) – (required), id of the hook

	Returns

	the hook

	Return type

	Hook

	
hooks(number=-1, etag=None)

	Iterate over hooks registered on this repository.

	Parameters

	
	number (int) – (optional), number of hoks to return. Default: -1
returns all hooks

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of hooks

	Return type

	Hook

	
ignore()

	Ignore notifications from this repository for the user.

New in version 1.0.

This replaces Repository#set_subscription.

	Returns

	the new repository subscription

	Return type

	:class:~github3.notifications.RepositorySubscription`

	
import_issue(title, body, created_at, assignee=None, milestone=None, closed=None, labels=None, comments=None)

	Import an issue into the repository.

See also: https://gist.github.com/jonmagic/5282384165e0f86ef105

	Parameters

	
	title (string) – (required) Title of issue

	body (string) – (required) Body of issue

	created_at (datetime or str) – (required) Creation timestamp

	assignee (string) – (optional) Username to assign issue to

	milestone (int) – (optional) Milestone ID

	closed (boolean) – (optional) Status of issue is Closed if True

	labels (list) – (optional) List of labels containing string names

	comments (list) – (optional) List of dictionaries which contain
created_at and body attributes

	Returns

	the imported issue

	Return type

	ImportedIssue

	
imported_issue(imported_issue_id)

	Retrieve imported issue specified by imported issue id.

	Parameters

	imported_issue_id (int) – (required) id of imported issue

	Returns

	the imported issue

	Return type

	ImportedIssue

	
imported_issues(number=-1, since=None, etag=None)

	Retrieve the collection of imported issues via the API.

See also: https://gist.github.com/jonmagic/5282384165e0f86ef105

	Parameters

	
	number (int) – (optional), number of imported issues to return.
Default: -1 returns all branches

	since – (optional), Only imported issues after this date will
be returned. This can be a datetime instance, ISO8601
formatted date string, or a string formatted like so:
2016-02-04 i.e. %Y-%m-%d

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of imported issues

	Return type

	ImportedIssue

	
invitations(number=-1, etag=None)

	Iterate over the invitations to this repository.

	Parameters

	
	number (int) – (optional), number of invitations to return. Default: -1 returns
all available invitations

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of repository invitation objects

	Return type

	Invitation

	
is_assignee(username)

	Check if the user can be assigned an issue on this repository.

	Parameters

	username (str or User) – name of the user to check

	Returns

	bool

	
is_collaborator(username)

	Check to see if username is a collaborator on this repository.

	Parameters

	username (str or User) – (required), login for the user

	Returns

	True if successful, False otherwise

	Return type

	bool

	
issue(number)

	Get the issue specified by number.

	Parameters

	number (int) – (required), number of the issue on this repository

	Returns

	the issue

	Return type

	Issue

	
issue_events(number=-1, etag=None)

	Iterate over issue events on this repository.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of events on issues

	Return type

	IssueEvent

	
issues(milestone=None, state=None, assignee=None, mentioned=None, labels=None, sort=None, direction=None, since=None, number=-1, etag=None)

	Iterate over issues on this repo based upon parameters passed.

Changed in version 0.9.0: The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	Parameters

	
	milestone (int) – (optional), ‘none’, or ‘*’

	state (str) – (optional), accepted values: (‘all’, ‘open’, ‘closed’)

	assignee (str) – (optional), ‘none’, ‘*’, or login name

	mentioned (str) – (optional), user’s login name

	labels (str) – (optional), comma-separated list of labels, e.g. ‘bug,ui,@high’

	sort – (optional), accepted values:
(‘created’, ‘updated’, ‘comments’, ‘created’)

	direction (str) – (optional), accepted values: (‘asc’, ‘desc’)

	since (datetime or str) – (optional), Only issues after this date will
be returned. This can be a datetime or an ISO8601 formatted
date string, e.g., 2012-05-20T23:10:27Z

	number (int) – (optional), Number of issues to return.
By default all issues are returned

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of issues

	Return type

	ShortIssue

	
key(id_num)

	Get the specified deploy key.

	Parameters

	id_num (int) – (required), id of the key

	Returns

	the deploy key

	Return type

	Key

	
keys(number=-1, etag=None)

	Iterate over deploy keys on this repository.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of keys

	Return type

	Key

	
label(name)

	Get the label specified by name.

	Parameters

	name (str) – (required), name of the label

	Returns

	the label

	Return type

	Label

	
labels(number=-1, etag=None)

	Iterate over labels on this repository.

	Parameters

	
	number (int) – (optional), number of labels to return. Default: -1
returns all available labels

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of labels

	Return type

	Label

	
languages(number=-1, etag=None)

	Iterate over the programming languages used in the repository.

	Parameters

	
	number (int) – (optional), number of languages to return. Default:
-1 returns all used languages

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of tuples

	Return type

	tuple

	
latest_pages_build()

	Get the build information for the most recent Pages build.

	Returns

	the information for the most recent build

	Return type

	PagesBuild

	
latest_release()

	Get the latest release.

Draft releases and prereleases are not returned by this endpoint.

	Returns

	the release

	Return type

	Release

	
license()

	Get the contents of a license for the repo.

	Returns

	the license

	Return type

	RepositoryLicense

	
mark_notifications(last_read=u'')

	Mark all notifications in this repository as read.

	Parameters

	last_read (str) – (optional), Describes the last point that
notifications were checked. Anything updated since this time will
not be updated. Default: Now. Expected in ISO 8601 format:
YYYY-MM-DDTHH:MM:SSZ. Example: “2012-10-09T23:39:01Z”.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
merge(base, head, message=u'')

	Perform a merge from head into base.

	Parameters

	
	base (str) – (required), where you’re merging into

	head (str) – (required), where you’re merging from

	message (str) – (optional), message to be used for the commit

	Returns

	the commit resulting from the merge

	Return type

	RepoCommit

	
milestone(number)

	Get the milestone indicated by number.

	Parameters

	number (int) – (required), unique id number of the milestone

	Returns

	the milestone

	Return type

	Milestone

	
milestones(state=None, sort=None, direction=None, number=-1, etag=None)

	Iterate over the milestones on this repository.

	Parameters

	
	state (str) – (optional), state of the milestones, accepted
values: (‘open’, ‘closed’)

	sort (str) – (optional), how to sort the milestones, accepted
values: (‘due_date’, ‘completeness’)

	direction (str) – (optional), direction to sort the milestones,
accepted values: (‘asc’, ‘desc’)

	number (int) – (optional), number of milestones to return.
Default: -1 returns all milestones

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of milestones

	Return type

	Milestone

	
network_events(number=-1, etag=None)

	Iterate over events on a network of repositories.

	Parameters

	
	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of events

	Return type

	Event

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
notifications(all=False, participating=False, since=None, number=-1, etag=None)

	Iterate over the notifications for this repository.

	Parameters

	
	all (bool) – (optional), show all notifications, including ones
marked as read

	participating (bool) – (optional), show only the notifications the
user is participating in directly

	since (datetime or str) – (optional), filters out any notifications updated
before the given time. This can be a datetime or an ISO8601
formatted date string, e.g., 2012-05-20T23:10:27Z

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of notification threads

	Return type

	Thread

	
pages()

	Get information about this repository’s pages site.

	Returns

	information about this repository’s GitHub pages site

	Return type

	PagesInfo

	
pages_builds(number=-1, etag=None)

	Iterate over pages builds of this repository.

	Parameters

	
	number (int) – (optional) the number of builds to return

	etag (str) – (optional), ETag value from a previous request

	Returns

	generator of builds

	Return type

	PagesBuild

	
project(id, etag=None)

	Return the organization project with the given ID.

	Parameters

	id (int) – (required), ID number of the project

	Returns

	the project

	Return type

	Project

	
projects(number=-1, etag=None)

	Iterate over projects for this organization.

	Parameters

	
	number (int) – (optional), number of members to return. Default:
-1 will return all available.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of projects

	Return type

	Project

	
pull_request(number)

	Get the pull request indicated by number.

	Parameters

	number (int) – (required), number of the pull request.

	Returns

	the pull request

	Return type

	PullRequest

	
pull_requests(state=None, head=None, base=None, sort=u'created', direction=u'desc', number=-1, etag=None)

	List pull requests on repository.

Changed in version 0.9.0: 	The state parameter now accepts ‘all’ in addition to ‘open’
and ‘closed’.

	The sort parameter was added.

	The direction parameter was added.

	Parameters

	
	state (str) – (optional), accepted values: (‘all’, ‘open’, ‘closed’)

	head (str) – (optional), filters pulls by head user and branch
name in the format user:ref-name, e.g., seveas:debian

	base (str) – (optional), filter pulls by base branch name.
Example: develop.

	sort (str) – (optional), Sort pull requests by created,
updated, popularity, long-running. Default: ‘created’

	direction (str) – (optional), Choose the direction to list pull
requests. Accepted values: (‘desc’, ‘asc’). Default: ‘desc’

	number (int) – (optional), number of pulls to return. Default: -1
returns all available pull requests

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of pull requests

	Return type

	ShortPullRequest

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
readme()

	Get the README for this repository.

	Returns

	this repository’s readme

	Return type

	Contents

	
ref(ref)

	Get a reference pointed to by ref.

The most common will be branches and tags. For a branch, you must
specify ‘heads/branchname’ and for a tag, ‘tags/tagname’. Essentially,
the system should return any reference you provide it in the namespace,
including notes and stashes (provided they exist on the server).

	Parameters

	ref (str) – (required)

	Returns

	the reference

	Return type

	Reference

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
refs(subspace=u'', number=-1, etag=None)

	Iterate over references for this repository.

	Parameters

	
	subspace (str) – (optional), e.g. ‘tags’, ‘stashes’, ‘notes’

	number (int) – (optional), number of refs to return. Default: -1
returns all available refs

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of references

	Return type

	Reference

	
release(id)

	Get a single release.

	Parameters

	id (int) – (required), id of release

	Returns

	the release

	Return type

	Release

	
release_from_tag(tag_name)

	Get a release by tag name.

release_from_tag() returns a release with specified tag
while release() returns a release with specified release id

	Parameters

	tag_name (str) – (required) name of tag

	Returns

	the release

	Return type

	Release

	
releases(number=-1, etag=None)

	Iterate over releases for this repository.

	Parameters

	
	number (int) – (optional), number of refs to return. Default: -1
returns all available refs

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of releases

	Return type

	Release

	
remove_collaborator(username)

	Remove collaborator username from the repository.

	Parameters

	username (str or User) – (required), login name of the collaborator

	Returns

	True if successful, False otherwise

	Return type

	bool

	
replace_topics(new_topics)

	Replace the repository topics with new_topics.

	Parameters

	topics (list) – (required), new topics of the repository

	Returns

	new topics of the repository

	Return type

	Topics

	
stargazers(number=-1, etag=None)

	List users who have starred this repository.

	Parameters

	
	number (int) – (optional), number of stargazers to return.
Default: -1 returns all subscribers available

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users

	Return type

	ShortUser

	
statuses(sha, number=-1, etag=None)

	Iterate over the statuses for a specific SHA.

Warning

Deprecated in v1.0. Also deprecated upstream
https://developer.github.com/v3/repos/statuses/

	Parameters

	
	sha (str) – SHA of the commit to list the statuses of

	number (int) – (optional), return up to number statuses. Default:
-1 returns all available statuses.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of statuses

	Return type

	Status

	
subscribe()

	Subscribe the user to this repository’s notifications.

New in version 1.0.

This replaces Repository#set_subscription

	Parameters

	
	subscribed (bool) – (required), determines if notifications should
be received from this repository.

	ignored (bool) – (required), determines if notifications should be
ignored from this repository.

	Returns

	the new repository subscription

	Return type

	RepositorySubscription

	
subscribers(number=-1, etag=None)

	Iterate over users subscribed to this repository.

	Parameters

	
	number (int) – (optional), number of subscribers to return.
Default: -1 returns all subscribers available

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of users subscribed to this repository

	Return type

	ShortUser

	
subscription()

	Return subscription for this Repository.

	Returns

	the user’s subscription to this repository

	Return type

	RepositorySubscription

	
tag(sha)

	Get an annotated tag.

http://learn.github.com/p/tagging.html

	Parameters

	sha (str) – (required), sha of the object for this tag

	Returns

	the annotated tag

	Return type

	Tag

	
tags(number=-1, etag=None)

	Iterate over tags on this repository.

	Parameters

	
	number (int) – (optional), return up to at most number tags.
Default: -1 returns all available tags.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of tags with GitHub repository specific information

	Return type

	RepoTag

	
teams(number=-1, etag=None)

	Iterate over teams with access to this repository.

	Parameters

	
	number (int) – (optional), return up to number Teams. Default: -1
returns all Teams.

	etag (str) – (optional), ETag from a previous request to the same endpoint

	Returns

	generator of teams

	Return type

	Team

	
topics()

	Get the topics of this repository.

	Returns

	this repository’s topics

	Return type

	Topics

	
tree(sha, recursive=False)

	Get a tree.

	Parameters

	
	sha (str) – (required), sha of the object for this tree

	recursive (bool) – (optional), whether to fetch the tree recursively

	Returns

	the tree

	Return type

	Tree

	
weekly_commit_count()

	Retrieve the total commit counts.

Note

All statistics methods may return a 202. If github3.py
receives a 202 in this case, it will return an emtpy dictionary.
You should give the API a moment to compose the data and then re
-request it via this method.

..versionadded:: 0.7

The dictionary returned has two entries: all and owner. Each
has a fifty-two element long list of commit counts. (Note: all
includes the owner.) d['all'][0] will be the oldest week,
d['all'][51] will be the most recent.

	Returns

	the commit count as a dictionary

	Return type

	dict

	
class github3.repos.repo.StarredRepository(json, session)

	This object represents the data returned about a user’s starred repos.

GitHub used to send back the starred_at attribute on Repositories but
then changed the structure to a new object that separates that from the
Repository representation. This consolidates the two.

Attributes:

	
starred_at

	A parsed datetime object representing the date a
the repository was starred.

	
repository

	The Repository that was starred by the user.

See also:
https://developer.github.com/v3/activity/starring/#list-repositories-being-starred

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
class github3.repos.contents.Contents(json, session)

	A representation of file contents returned via the API.

See also: http://developer.github.com/v3/repos/contents/

This object has the following attributes:

	
content

	The body of the file. If this is present, it may be base64 encoded.

	
encoding

	The encoding used on the content when returning the data from
the API, e.g., base64. If content is not present this will
not be present either.

	
decoded

	
Note

This is a computed attribute which isn’t returned by the API.

Changed in version 0.5.2.

Decoded content of the file as a bytes object. If we try to decode
to character set for you, we might encounter an exception which
will prevent the object from being created. On python2 this is the
same as a string, but on python3 you should call the decode method
with the character set you wish to use, e.g.,
content.decoded.decode('utf-8').

	
git_url

	The URL for the Git API pertaining to this file.

	
html_url

	The URL to open this file in a browser.

	
links

	A dictionary of links returned about the contents and related
resources.

	
name

	The name of the file.

	
path

	The path to this file.

	
sha

	The SHA1 of the contents of this file.

	
size

	The size of file in bytes.

	
submodule_git_url

	The URL of the git submodule (if this is a git submodule).

	
target

	If the file is a symlink, this will be present and provides the type
of file that the symlink points to.

	
type

	Type of content, e.g., 'file', 'symlink', or 'submodule'.

	
delete(message, branch=None, committer=None, author=None)

	Delete this file.

	Parameters

	
	message (str) – (required), commit message to describe the removal

	branch (str) – (optional), branch where the file exists.
Defaults to the default branch of the repository.

	committer (dict) – (optional), if no information is given the authenticated user’s
information will be used. You must specify both a name and email.

	author (dict) – (optional), if omitted this will be filled in with committer
information. If passed, you must specify both a name and email.

	Returns

	dictionary of new content and associated commit

	Return type

	Contents and
Commit

	
update(message, content, branch=None, committer=None, author=None)

	Update this file.

	Parameters

	
	message (str) – (required), commit message to describe the update

	content (str) – (required), content to update the file with

	branch (str) – (optional), branch where the file exists.
Defaults to the default branch of the repository.

	committer (dict) – (optional), if no information is given the authenticated user’s
information will be used. You must specify both a name and email.

	author (dict) – (optional), if omitted this will be filled in with committer
information. If passed, you must specify both a name and email.

	Returns

	dictionary containing the updated contents object and the
commit in which it was changed.

	Return type

	dictionary of Contents and
Commit

	
class github3.repos.hook.Hook(json, session)

	The representation of a hook on a repository.

See also: http://developer.github.com/v3/repos/hooks/

This object has the following attributes:

	
active

	A boolean attribute describing whether the hook is active or not.

	
config

	A dictionary containing the configuration for this hook.

	
created_at

	A datetime object representing the date and time
when this hook was created.

	
events

	The list of events which trigger this hook.

	
id

	The unique identifier for this hook.

	
name

	The name provided to this hook.

	
updated_at

	A datetime object representing the date and time
when this hook was updated.

	
delete()

	Delete this hook.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
edit(config={}, events=[], add_events=[], rm_events=[], active=True)

	Edit this hook.

	Parameters

	
	config (dict) – (optional), key-value pairs of settings for this hook

	events (list) – (optional), which events should this be triggered for

	add_events (list) – (optional), events to be added to the list of events that this hook
triggers for

	rm_events (list) – (optional), events to be removed from the list of events that this
hook triggers for

	active (bool) – (optional), should this event be active

	Returns

	True if successful, False otherwise

	Return type

	bool

	
ping()

	Ping this hook.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
test()

	Test this hook.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.repos.issue_import.ImportedIssue(json, session)

	Represents an issue imported via the unofficial API.

See also: https://gist.github.com/jonmagic/5282384165e0f86ef105

This object has the following attributes:

	
created_at

	A datetime object representing the date and time
when this imported issue was created.

	
id

	The globally unique identifier for this imported issue.

	
import_issues_url

	The URL used to import more issues via the API.

	
repository_url

	The URL used to retrieve the repository via the API.

	
status

	The status of this imported issue.

	
updated_at

	A datetime object representing te date and time
when this imported issue was last updated.

Git-related Objects

	
class github3.repos.tag.RepoTag(json, session)

	Representation of a tag made on a GitHub repository.

Note

This is distinct from Tag. This object
has information specific to a tag on a GitHub repository.
That includes URLs to the tarball and zipball files auto-generated
by GitHub.

See also: http://developer.github.com/v3/repos/#list-tags

This object has the following attributes:

	
commit

	
Changed in version 1.0.0: This attribute used to be a two item dictionary.

A MiniCommit object representing the
commit this tag references.

	
name

	The name of this tag, e.g., v1.0.0.

	
tarball_url

	The URL for the tarball file generated by GitHub for this tag.

	
zipball_url

	The URL for the zipball file generated by GitHub for this tag.

Branches

	
class github3.repos.branch.Branch(json, session)

	The representation of a branch returned in a collection.

GitHub’s API returns different amounts of information about repositories
based upon how that information is retrieved. This object exists to
represent the limited amount of information returned for a specific
branch in a collection. For example, you would receive this class when
calling branches(). To provide a
clear distinction between the types of branches, github3.py uses different
classes with different sets of attributes.

This object has the same attributes as a
ShortBranch as well as the following:

	
links

	The dictionary of URLs returned by the API as _links.

	
protected

	A boolean attribute that describes whether this branch is protected or
not.

	
original_protection

	
Changed in version 1.1.0: To support a richer branch protection API, this is the new name
for the information formerly stored under the attribute
protection.

A dictionary with details about the protection configuration of this
branch.

	
protection_url

	The URL to access and manage details about this branch’s protection.

	
class github3.repos.branch.ShortBranch(json, session)

	The representation of a branch returned in a collection.

GitHub’s API returns different amounts of information about repositories
based upon how that information is retrieved. This object exists to
represent the limited amount of information returned for a specific
branch in a collection. For example, you would receive this class when
calling branches(). To provide a
clear distinction between the types of branches, github3.py uses different
classes with different sets of attributes.

This object has the following attributes:

	
commit

	A MiniCommit representation of the
newest commit on this branch with the associated repository metadata.

	
name

	The name of this branch.

	
class github3.repos.branch.BranchProtection(json, session)

	The representation of a branch’s protection.

See also

	Branch protection API documentation [https://developer.github.com/v3/repos/branches/#get-branch-protection]

	GitHub’s documentation of branch protection

This object has the following attributes:

	
enforce_admins

	A ProtectionEnforceAdmins instance
representing whether required status checks are required for admins.

	
restrictions

	A ProtectionRestrictions representing
who can push to this branch. Team and user restrictions are only
available for organization-owned repositories.

	
required_pull_request_reviews

	A ProtectionRequiredPullRequestReviews
representing the protection provided by requiring pull request
reviews.

	
required_status_checks

	A ProtectionRequiredStatusChecks
representing the protection provided by requiring status checks.

	
delete()

	Remove branch protection.

	Returns

	True if successful, False otherwise

	Return type

	bool

	
update(enforce_admins=None, required_status_checks=None, required_pull_request_reviews=None, restrictions=None)

	Enable force push protection and configure status check enforcement.

See: http://git.io/v4Gvu

	Parameters

	
	enforce_admins (str) – (optional), Specifies the enforcement level of the status checks.
Must be one of ‘off’, ‘non_admins’, or ‘everyone’. Use None or
omit to use the already associated value.

	required_status_checks (list) – (optional), A list of strings naming status checks that must pass
before merging. Use None or omit to use the already associated
value.

	required_pull_request_reviews (obj) – (optional), Object representing the configuration of Request Pull
Request Reviews settings. Use None or omit to use the already
associated value.

	restrictions (obj) – (optional), Object representing the configuration of Restrictions.
Use None or omit to use the already associated value.

	Returns

	Updated branch protection

	Return type

	BranchProtection

	
class github3.repos.branch.ProtectionEnforceAdmins(json, session)

	The representation of a sub-portion of branch protection.

See also

	Branch protection API documentation [https://developer.github.com/v3/repos/branches/#get-branch-protection]

	GitHub’s documentation of branch protection

	Admin enforcement of protected branch [https://developer.github.com/v3/repos/branches/#get-admin-enforcement-of-protected-branch]

	GitHub’s documentation of protecting a branch with admins

This object has the following attributes:

	
enabled

	A boolean attribute indicating whether the enforce_admins
protection is enabled or disabled.

	
disable()

	Disable Admin enforcement for protected branch.

	
enable()

	Enable Admin enforcement for protected branch.

	
class github3.repos.branch.ProtectionRestrictions(json, session)

	The representation of a sub-portion of branch protection.

See also

	Branch protection API documentation [https://developer.github.com/v3/repos/branches/#get-branch-protection]

	GitHub’s documentation of branch protection

	Branch restriction documentation [https://help.github.com/articles/about-branch-restrictions]

	GitHub’s description of branch restriction

This object has the following attributes:

	
original_teams

	List of ShortTeam objects representing
the teams allowed to push to the protected branch.

	
original_users

	List of ShortUser objects representing
the users allowed to push to the protected branch.

	
teams_url

	The URL to retrieve the list of teams allowed to push to the
protected branch.

	
users_url

	The URL to retrieve the list of users allowed to push to the
protected branch.

	
add_teams(teams)

	Add teams to the protected branch.

See:
https://developer.github.com/v3/repos/branches/#add-team-restrictions-of-protected-branch

Warning

This will not update the object to replace the original_teams
attribute.

	Parameters

	teams (list) – The list of the team names to have access to interact with
protected branch.

	Returns

	List of added teams

	Return type

	List[github3.orgs.ShortTeam]

	
add_users(users)

	Add users to protected branch.

See
https://developer.github.com/v3/repos/branches/#add-user-restrictions-of-protected-branch

Warning

This will not update the object to replace the original_users
attribute.

	Parameters

	users (list) – The list of the user logins to have access to interact with
protected branch.

	Returns

	List of added users

	Return type

	List[github3.users.ShortUser]

	
delete()

	Completely remove restrictions of the protected branch.

See
https://developer.github.com/v3/repos/branches/#remove-user-restrictions-of-protected-branch

	Returns

	True if successful, False otherwise.

	Return type

	bool

	
remove_teams(teams)

	Remove teams from protected branch.

See
https://developer.github.com/v3/repos/branches/#remove-team-restrictions-of-protected-branch

	Parameters

	teams (list) – The list of the team names to stop having access to interact with
protected branch.

	Returns

	List of removed teams

	Return type

	List[github3.orgs.ShortTeam]

	
remove_users(users)

	Remove users from protected branch.

See
https://developer.github.com/v3/repos/branches/#remove-user-restrictions-of-protected-branch

	Parameters

	users (list) – The list of the user logins to stop having access to interact with
protected branch.

	Returns

	List of removed users

	Return type

	List[github3.users.ShortUser]

	
replace_teams(teams)

	Replace teams that will have access to protected branch.

See
https://developer.github.com/v3/repos/branches/#replace-team-restrictions-of-protected-branch

	Parameters

	teams (list) – The list of the team names to have access to interact with
protected branch.

	Returns

	List of teams that now have access to the protected branch

	Return type

	List[github3.orgs.ShortTeam]

	
replace_users(users)

	Replace users that will have access to protected branch.

See
https://developer.github.com/v3/repos/branches/#replace-user-restrictions-of-protected-branch

	Parameters

	users (list) – The list of the user logins to have access to interact with
protected branch.

	Returns

	List of users that now have access to the protected branch

	Return type

	List[github3.users.ShortUser]

	
teams(number=-1)

	Retrieve an up-to-date listing of teams.

	Returns

	An iterator of teams

	Return type

	ShortTeam

	
users(number=-1)

	Retrieve an up-to-date listing of users.

	Returns

	An iterator of users

	Return type

	ShortUser

	
class github3.repos.branch.ProtectionRequiredPullRequestReviews(json, session)

	The representation of a sub-portion of branch protection.

See also

	Branch protection API documentation [https://developer.github.com/v3/repos/branches/#get-branch-protection]

	GitHub’s documentation of branch protection.

	Branch Required Pull Request Reviews [https://developer.github.com/v3/repos/branches/#get-pull-request-review-enforcement-of-protected-branch]

	GitHub’s documentation of required pull request review protections

This object has the folllowing attributes:

	
dismiss_stale_reviews

	A boolean attribute describing whether stale pull request reviews
should be automatically dismissed by GitHub.

	
dismissal_restrictions

	If specified, a ProtectionRestrictions
object describing the dismissal restrictions for pull request reviews.

	
require_code_owner_reviews

	A boolean attribute describing whether to require “code owners” to
review a pull request before it may be merged.

	
required_approving_review_count

	An integer describing the number (between 1 and 6) of reviews required
before a pull request may be merged.

	
delete()

	Remove the Required Pull Request Reviews.

	Returns

	Whether the operation finished successfully or not

	Return type

	bool

	
update(dismiss_stale_reviews=None, require_code_owner_reviews=None, required_approving_review_count=None, dismissal_restrictions=None)

	Update the configuration for the Required Pull Request Reviews.

	Parameters

	
	dismiss_stale_reviews (bool) – Whether or not to dismiss stale pull request reviews automatically

	require_code_owner_reviews (bool) – Blocks merging pull requests until code owners review them

	required_approving_review_count (int) – The number of reviewers required to approve pull requests.
Acceptable values are between 1 and 6.

	dismissal_restrictions (dict) – An empty dictionary will disable this. This must have the
following keys: users and teams each mapping to a list
of user logins and team slugs respectively.

	Returns

	A updated instance of the required pull request reviews.

	Return type

	ProtectionRequiredPullRequestReviews

	
class github3.repos.branch.ProtectionRequiredStatusChecks(json, session)

	The representation of a sub-portion of branch protection.

See also

	Branch protection API documentation [https://developer.github.com/v3/repos/branches/#get-branch-protection]

	GitHub’s documentation of branch protection

	Required Status Checks documentation [https://help.github.com/articles/about-required-status-checks]

	GitHub’s description of required status checks

	Required Status Checks API documentation [https://developer.github.com/v3/repos/branches/#get-required-status-checks-of-protected-branch]

	The API documentation for required status checks

	
add_contexts(contexts)

	Add contexts to the existing list of required contexts.

See:
https://developer.github.com/v3/repos/branches/#add-required-status-checks-contexts-of-protected-branch

	Parameters

	contexts (list) – The list of contexts to append to the existing list.

	Returns

	The updated list of contexts.

	Return type

	list

	
contexts()

	Retrieve the list of contexts required as status checks.

See:
https://developer.github.com/v3/repos/branches/#list-required-status-checks-contexts-of-protected-branch

	Returns

	A list of context names which are required status checks.

	Return type

	list

	
delete()

	Remove required status checks from this branch.

See:
https://developer.github.com/v3/repos/branches/#remove-required-status-checks-of-protected-branch

	Returns

	True if successful, False otherwise

	Return type

	bool

	
delete_contexts(contexts)

	Delete the contexts required as status checks.

See
https://developer.github.com/v3/repos/branches/#replace-required-status-checks-contexts-of-protected-branch

	Parameters

	contexts (list) – The names of the contexts to be required as status checks

	Returns

	The updated list of contexts required as status checks.

	Return type

	list

	
remove_contexts(contexts)

	Remove the specified contexts from the list of required contexts.

See:
https://developer.github.com/v3/repos/branches/#remove-required-status-checks-contexts-of-protected-branch

	Parameters

	contexts (list) – The context names to remove

	Returns

	The updated list of contexts required as status checks.

	Return type

	list

	
replace_contexts(contexts)

	Replace the existing contexts required as status checks.

See
https://developer.github.com/v3/repos/branches/#replace-required-status-checks-contexts-of-protected-branch

	Parameters

	contexts (list) – The names of the contexts to be required as status checks

	Returns

	The new list of contexts required as status checks.

	Return type

	list

	
update(strict=None, contexts=None)

	Update required status checks for the branch.

This requires admin or owner permissions to the repository and
branch protection to be enabled.

See also

	API docs [https://developer.github.com/v3/repos/branches/#update-required-status-checks-of-protected-branch]

	Descrption of how to update the required status checks.

	Parameters

	
	strict (bool) – Whether this should be strict protection or not.

	contexts (list) – A list of context names that should be required.

	Returns

	A new instance of this class with the updated information

	Return type

	ProtectionRequiredStatusChecks

Commits

	
class github3.repos.commit.MiniCommit(json, session)

	A commit returned on a ShortBranch.

	
class github3.repos.commit.ShortCommit(json, session)

	Representation of an incomplete commit in a collection.

	
class github3.repos.commit.RepoCommit(json, session)

	Representation of a commit with repository and git data.

	
class github3.repos.comparison.Comparison(json, session)

	A representation of a comparison between two or more commit objects.

See also:
http://developer.github.com/v3/repos/commits/#compare-two-commits

This object has the following attributes:

.. attribute:: ahead_by

The number of commits between the head and base commit.

	
base_commit

	A ShortCommit representing the base
commit in this comparison.

	
behind_by

	The number of commits the head commit is behind the base.

	
commits

	A list of ShortCommit objects
representing the commits in the comparison.

	
diff_url

	The URL to retrieve the diff between the head and base commits.

	
files

	A list of dictionaries describing each of the modified files in the
comparison.

	
html_url

	The URL to view the comparison in a browser.

	
patch_url

	The URL to retrieve the patch-formatted diff of this comparison.

	
permalink_url

	The permanent URL to retrieve this comparison.

	
status

	Whether the head commit is ahead or behind of base.

	
total_commits

	The total number of commits difference.

	
diff()

	Retrieve the diff for this comparison.

	Returns

	the diff as a bytes object

	Return type

	bytes

	
patch()

	Retrieve the patch formatted diff for this commit.

	Returns

	the patch as a bytes object

	Return type

	bytes

Release Objects

	
class github3.repos.release.Asset(json, session)

	Representation of an asset in a release.

See also

	List Assets [https://developer.github.com/v3/repos/releases/#list-assets-for-a-release], assets()

	Documentation around listing assets of a release

	Upload Assets [https://developer.github.com/v3/repos/releases/#upload-a-release-asset], upload_asset()

	Documentation around uploading assets to a release

	Get a Single Asset [https://developer.github.com/v3/repos/releases/#get-a-single-release-asset], asset()

	Documentation around retrieving an asset

	Edit an Asset [https://developer.github.com/v3/repos/releases/#edit-a-release-asset], edit()

	Documentation around editing an asset

	Delete an Asset [https://developer.github.com/v3/repos/releases/#delete-a-release-asset], delete()

	Documentation around deleting an asset

This object has the following attributes:

	
browser_download_url

	The user-friendly URL to download this asset via a browser.

	
content_type

	The Content-Type provided by the uploader when this asset was created.

	
created_at

	A datetime object representing the date and time
when this asset was created.

	
download_count

	The number of times this asset has been downloaded.

	
download_url

	The URL to retrieve this uploaded asset via the API, e.g., tarball,
zipball, etc.

	
id

	The unique identifier of this asset.

	
label

	The short description of this asset.

	
name

	The name provided to this asset.

	
size

	The file size of this asset.

	
state

	The state of this asset, e.g., 'uploaded'.

	
updated_at

	A datetime object representing the date and time
when this asset was most recently updated.

	
delete()

	Delete this asset if the user has push access.

	Returns

	True if successful; False if not successful

	Return type

	bool

	
download(path=u'')

	Download the data for this asset.

	Parameters

	path (str, file) – (optional), path where the file should be saved to, default is the
filename provided in the headers and will be written in the current
directory. It can take a file-like object as well

	Returns

	name of the file, if successful otherwise None

	Return type

	str

	
edit(name, label=None)

	Edit this asset.

	Parameters

	
	name (str) – (required), The file name of the asset

	label (str) – (optional), An alternate description of the asset

	Returns

	True if successful, False otherwise

	Return type

	bool

	
class github3.repos.release.Release(json, session)

	Representation of a GitHub release.

It holds the information GitHub returns about a release from a
Repository.

Please see GitHub’s Releases Documentation [https://developer.github.com/v3/repos/releases/] for more information.

This object has the following attributes:

	
original_assets

	A list of Asset objects representing
the assets uploaded for this relesae.

	
assets_url

	The URL to retrieve the assets from the API.

	
author

	A ShortUser representing the creator of this
release.

	
body

	The description of this release as written by the release creator.

	
created_at

	A datetime object representing the date and time
when this release was created.

	
draft

	A boolean attribute describing whether this release is a draft.

	
html_url

	The URL to view this release in a browser.

	
id

	The unique identifier of this release.

	
name

	The name given to this release by the author.

	
prerelease

	A boolean attribute indicating whether the release is a pre-release.

	
published_at

	A datetime object representing the date and time
when this release was publisehd.

	
tag_name

	The name of the tag associated with this release.

	
tarball_url

	The URL to retrieve a GitHub generated tarball for this release from
the API.

	
target_commitish

	The reference (usually a commit) that is targetted by this release.

	
upload_urlt

	A URITemplate object that expands to form the
URL to upload assets to.

	
zipball_url

	The URL to retrieve a GitHub generated zipball for this release from
the API.

	
archive(format, path=u'')

	Get the tarball or zipball archive for this release.

	Parameters

	
	format (str) – (required), accepted values: (‘tarball’, ‘zipball’)

	path (str, file) – (optional), path where the file should be saved to, default is the
filename provided in the headers and will be written in the current
directory. It can take a file-like object as well

	Returns

	True if successful, False otherwise

	Return type

	bool

	
asset(asset_id)

	Retrieve the asset from this release with asset_id.

	Parameters

	asset_id (int) – ID of the Asset to retrieve

	Returns

	the specified asset, if it exists

	Return type

	Asset

	
assets(number=-1, etag=None)

	Iterate over the assets available for this release.

	Parameters

	
	number (int) – (optional), Number of assets to return

	etag (str) – (optional), last ETag header sent

	Returns

	generator of asset objects

	Return type

	Asset

	
delete()

	Delete this release.

Only users with push access to the repository can delete a release.

	Returns

	True if successful; False if not successful

	Return type

	bool

	
edit(tag_name=None, target_commitish=None, name=None, body=None, draft=None, prerelease=None)

	Edit this release.

Only users with push access to the repository can edit a release.

If the edit is successful, this object will update itself.

	Parameters

	
	tag_name (str) – (optional), Name of the tag to use

	target_commitish (str) – (optional), The “commitish” value that determines where the Git tag
is created from. Defaults to the repository’s default branch.

	name (str) – (optional), Name of the release

	body (str) – (optional), Description of the release

	draft (boolean) – (optional), True => Release is a draft

	prerelease (boolean) – (optional), True => Release is a prerelease

	Returns

	True if successful; False if not successful

	Return type

	bool

	
upload_asset(content_type, name, asset, label=None)

	Upload an asset to this release.

Note

All parameters are required.

	Parameters

	
	content_type (str) – The content type of the asset. Wikipedia has a list of common media
types

	name (str) – The name of the file

	asset – The file or bytes object to upload.

	label – (optional), An alternate short description of the asset.

	Returns

	the created asset

	Return type

	Asset

Pages Objects

	
class github3.repos.pages.PagesInfo(json, session)

	Representation of the information about a GitHub pages website.

	
cname

	The cname in use for the pages site, if one is set.

	
custom_404

	A boolean attribute indicating whether the user configured a custom
404 page for this site.

	
status

	The current status of the pages site, e.g., built.

	
class github3.repos.pages.PagesBuild(json, session)

	Representation of a single build of a GitHub pages website.

	
commit

	The SHA of the commit that triggered this build.

	
created_at

	A datetime object representing the date and time
when this build was created.

	
duration

	The time it spent processing this build.

	
error

	If this build errored, a dictionary containing the error message and
details about the error.

	
pusher

	A ShortUser representing the user who pushed
the commit that triggered this build.

	
status

	The current statues of the build, e.g., building.

	
updated_at

	A datetime object representing the date and time
when this build was last updated.

Comment Objects

More information about these classes can be found in the official documentation
about comments [http://developer.github.com/v3/repos/comments/].

	
class github3.repos.comment.ShortComment(json, session)

	The representation of an abridged comment on an object in a repo.

This object has the following attributes:

	
author_association

	The affiliation the author of this comment has with the repository.

	
body

	The Markdown formatted text of this comment.

	
commit_id

	The SHA1 associated with this comment.

	
created_at

	A datetime object representing the date and time
when this comment was created.

	
html_url

	The URL to view this comment in a browser.

	
id

	The unique identifier of this comment.

	
line

	The line number where the comment is located.

	
path

	The path to the file where this comment was made.

	
position

	The position in the diff where the comment was left.

	
updated_at

	A datetime object representing the date and time
when this comment was most recently updated.

	
user

	A ShortUser representing the author of this
comment.

	
class github3.repos.comment.RepoComment(json, session)

	The representation of the full comment on an object in a repository.

This object has the same attributes as a
ShortComment as well as the following:

	
body_html

	The HTML formatted text of this comment.

	
body_text

	The plain-text formatted text of this comment.

Deployment and Status Objects

	
class github3.repos.deployment.Deployment(json, session)

	Representation of a deployment of a repository at a point in time.

See also: https://developer.github.com/v3/repos/deployments/

This object has the following attributes:

	
created_at

	A datetime representing the date and time when this
deployment was created.

	
creator

	A ShortUser representing the user who created
this deployment.

	
description

	The description of this deployment as provided by the creator.

	
environment

	The environment targeted for this deployment, e.g., 'production',
'staging'.

	
id

	The unique identifier of this deployment.

	
payload

	The JSON payload string sent as part to trigger this deployment.

	
ref

	The reference used to create this deployment, e.g.,
'deploy-20140526'.

	
sha

	The SHA1 of the branch on GitHub when it was deployed.

	
statuses_url

	The URL to retrieve the statuses of this deployment from the API.

	
updated_at

	A datetime object representing the date and time
when this deployment was most recently updated.

	
create_status(state, target_url=None, description=None)

	Create a new deployment status for this deployment.

	Parameters

	
	state (str) – (required), The state of the status. Can be one of
pending, success, error, or failure.

	target_url (str) – The target URL to associate with this status.
This URL should contain output to keep the user updated while the
task is running or serve as historical information for what
happened in the deployment. Default: ‘’.

	description (str) – A short description of the status. Default: ‘’.

	Returns

	the incomplete deployment status

	Return type

	DeploymentStatus

	
statuses(number=-1, etag=None)

	Iterate over the deployment statuses for this deployment.

	Parameters

	
	number (int) – (optional), the number of statuses to return.
Default: -1, returns all statuses.

	etag (str) – (optional), the ETag header value from the last time
you iterated over the statuses.

	Returns

	generator of the statuses of this deployment

	Return type

	DeploymentStatus

	
class github3.repos.deployment.DeploymentStatus(json, session)

	Representation of the status of a deployment of a repository.

See also
https://developer.github.com/v3/repos/deployments/#get-a-single-deployment-status

This object has the following attributes:

	
created_at

	A datetime representing the date and time when this
deployment status was created.

	
creator

	A ShortUser representing the user who created
this deployment status.

	
deployment_url

	The URL to retrieve the information about the deployment from the API.

	
description

	The description of this status as provided by the creator.

	
id

	The unique identifier of this deployment.

	
state

	The state of the deployment, e.g., 'success'.

	
target_url

	The URL to associate with this status. This should link to the output
of the deployment.

	
class github3.repos.status.ShortStatus(json, session)

	Representation of a short status on a repository.

New in version 1.0.0.

This is the representation found in a
CombinedStatus object.

See also: http://developer.github.com/v3/repos/statuses/

This object has the following attributes:

	
context

	This is a string that explains the context of this status object.
For example, 'continuous-integration/travis-ci/pr'.

	
created_at

	A datetime object representing the date and time
when this status was created.

	
creator

	A ShortUser representing the user who created
this status.

	
description

	A short description of the status.

	
id

	The unique identifier of this status object.

	
state

	The state of this status, e.g., 'success', 'pending',
'failure'.

	
target_url

	The URL to retrieve more information about this status.

	
updated_at

	A datetime object representing the date and time
when this status was most recently updated.

	
class github3.repos.status.CombinedStatus(json, session)

	A representation of the combined statuses in a repository.

See also: http://developer.github.com/v3/repos/statuses/

This object has the following attributes:

	
commit_url

	The URL of the commit this combined status is present on.

	
repository

	A ShortRepository representing the
repository on which this combined status exists.

	
sha

	The SHA1 of the commit this status exists on.

	
state

	The state of the combined status, e.g., 'success', 'pending',
'failure'.

	
statuses

	The list of ShortStatus objects
representing the individual statuses that is combined in this object.

	
total_count

	The total number of sub-statuses.

	
class github3.repos.status.Status(json, session)

	Representation of a full status on a repository.

See also: http://developer.github.com/v3/repos/statuses/

This object has the same attributes as a
ShortStatus as well as the following
attributes:

	
creator

	A ShortUser representing the user who created
this status.

Contributor Statistics Objects

	
class github3.repos.stats.ContributorStats(json, session)

	Representation of a user’s contributor statistics to a repository.

See also http://developer.github.com/v3/repos/statistics/

This object has the following attributes:

	
author

	A ShortUser representing the contributor
whose stats this object represents.

	
total

	The total number of commits authored by author.

	
weeks

	A list of dictionaries containing weekly statistical data.

	
alternate_weeks

	
Note

github3 generates this data for a more humane interface
to the data in weeks.

A list of dictionaries that provide an easier to remember set of
keys as well as a datetime object representing the
start of the week. The dictionary looks vaguely like:

{
 'start of week': datetime(2013, 5, 5, 5, 0, tzinfo=tzutc())
 'additions': 100,
 'deletions': 150,
 'commits': 5,
}

Search Results

These classes are meant to expose the entirety of an item returned as a search
result by GitHub’s Search API.

	
class github3.search.CodeSearchResult(json, session)

	A representation of a code search result from the API.

This object has the following attributes:

	
git_url

	The URL to retrieve the blob via Git

	
html_url

	The URL to view the blob found in a browser.

	
name

	The name of the file where the search result was found.

	
path

	The path in the repository to the file containing the result.

	
repository

	A ShortRepository representing the
repository in which the result was found.

	
score

	The confidence score assigned to the result.

	
sha

	The SHA1 of the blob in which the code can be found.

	
text_matches

	A list of the text matches in the blob that generated this result.

Note

To receive these, you must pass text_match=True to
search_code().

	
class github3.search.IssueSearchResult(json, session)

	A representation of a search result containing an issue.

This object has the following attributes:

	
issue

	A ShortIssue representing the issue
found in this search result.

	
score

	The confidence score of this search result.

	
text_matches

	A list of matches in the issue for this search result.

Note

To receive these, you must pass text_match=True to
search_issues().

	
class github3.search.RepositorySearchResult(json, session)

	A representation of a search result containing a repository.

This object has the following attributes:

.. attribute:: repository

A ShortRepository representing the
repository found by the search.

	
score

	The confidence score of this search result.

	
text_matches

	A list of the text matches in the repository that generated this
result.

Note

To receive these, you must pass text_match=True to
search_code().

	
class github3.search.UserSearchResult(json, session)

	Representation of a search result for a user.

This object has the following attributes:

	
score

	The confidence score of this result.

	
text_matches

	If present, a list of text strings that match the search string.

	
user

	A ShortUser representing the user found
in this search result.

Custom Iterator Structures

Many of the methods in github3.py that return iterators of another object are
actually returning one of the iterators below. These iterators effectively
allow users to ignore GitHub’s API pagination of large sets of data. In all
senses, they behave like a normal Python iterator. Their difference is that
they have extra logic around making API requests and coercing the JSON into
predefined objects.

	
class github3.structs.GitHubIterator(count, url, cls, session, params=None, etag=None, headers=None)

	The GitHubIterator class powers all of the iter_* methods.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
cls = None

	Class for constructing an item to return

	
count = None

	Number of items left in the iterator

	
etag = None

	The ETag Header value returned by GitHub

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
headers = None

	Headers generated for the GET request

	
last_response = None

	The last response seen

	
last_status = None

	Last status code received

	
last_url = None

	Last URL that was requested

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
next()

	Return the next item from the iterator. When exhausted, raise StopIteration

	
original = None

	Original number of items requested

	
params = None

	Parameters of the query string

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
url = None

	URL the class used to make it’s first GET

	
class github3.structs.SearchIterator(count, url, cls, session, params=None, etag=None, headers=None)

	This is a special-cased class for returning iterable search results.

It inherits from GitHubIterator.
All members and methods documented here are unique to instances of this
class. For other members and methods, check its parent class.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
items = None

	Items array returned in the last request

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
next()

	Return the next item from the iterator. When exhausted, raise StopIteration

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
total_count = None

	Total count returned by GitHub

Users and their Associated Objects

This section of the documentation covers the representations of various
objects related to the Users API [https://developer.github.com/v3/users/].

User Objects

	
class github3.users.ShortUser(json, session)

	Object for the shortened representation of a User.

GitHub’s API returns different amounts of information about users based
upon how that information is retrieved. Often times, when iterating over
several users, GitHub will return less information. To provide a clear
distinction between the types of users, github3.py uses different classes
with different sets of attributes.

New in version 1.0.0.

	
avatar_url

	The URL of the avatar (possibly from Gravatar)

	
events_urlt

	A URITemplate object from uritemplate that can be used to generate
an events URL

	
followers_url

	A string representing the resource to retrieve a User’s followers

	
following_urlt

	A URITemplate object from uritemplate that can be used to generate
the URL to check if this user is following other_user

	
gists_urlt

	A URITemplate object from uritemplate that can be used to generate
the URL to retrieve a Gist by its id

	
gravatar_id

	The identifier for the user’s gravatar

	
html_url

	The URL of the user’s publicly visible profile. For example,
https://github.com/sigmavirus24

	
id

	The unique ID of the account

	
login

	The username of the user, e.g., sigmavirus24

	
organizations_url

	A string representing the resource to retrieve the organizations to
which a user belongs

	
received_events_url

	A string representing the resource to retrieve the events a user
received

	
repos_url

	A string representing the resource to list a user’s repositories

	
site_admin

	A boolean attribute indicating whether the user is a member of
GitHub’s staff

	
starred_urlt

	A URITemplate object from uritemplate that can be used to generate
a URL to retrieve whether the user has starred a repository.

	
subscriptions_url

	A string representing the resource to list a user’s subscriptions

	
type

	A string representing the type of User account this. In all cases
should be “User”

	
url

	A string of this exact resource retrievable from GitHub’s API

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete the user.

Per GitHub API documentation, it is often preferable to suspend the
user.

Note

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
demote()

	Demote a site administrator to simple user.

You can demote any user account except your own.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
events(public=False, number=-1, etag=None)

	Iterate over events performed by this user.

	Parameters

	
	public (bool) – (optional), only list public events for the
authenticated user

	number (int) – (optional), number of events to return. Default: -1
returns all available events.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
followers(number=-1, etag=None)

	Iterate over the followers of this user.

	Parameters

	
	number (int) – (optional), number of followers to return. Default:
-1 returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
following(number=-1, etag=None)

	Iterate over the users being followed by this user.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1
returns all available users

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of this user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of GPGKeys

	
impersonate(scopes=None)

	Obtain an impersonation token for the user.

The retrieved token will allow impersonation of the user.
This is only available for admins of a GitHub Enterprise instance.

	Parameters

	scopes (list) – (optional), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	Returns

	Authorization

	
is_assignee_on(username, repository)

	Check if this user can be assigned to issues on username/repository.

	Parameters

	
	username (str) – owner’s username of the repository

	repository (str) – name of the repository

	Returns

	True if the use can be assigned, False otherwise

	Return type

	bool

	
is_following(username)

	Check if this user is following username.

	Parameters

	username (str) – (required)

	Returns

	bool

	
keys(number=-1, etag=None)

	Iterate over the public keys of this user.

New in version 0.5.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Keys

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
organization_events(org, number=-1, etag=None)

	Iterate over events from the user’s organization dashboard.

Note

You must be authenticated to view this.

	Parameters

	
	org (str) – (required), name of the organization

	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
organizations(number=-1, etag=None)

	Iterate over organizations the user is member of.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organization

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganizations

	
promote()

	Promote a user to site administrator.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
received_events(public=False, number=-1, etag=None)

	Iterate over events that the user has received.

If the user is the authenticated user, you will see private and public
events, otherwise you will only see public events.

	Parameters

	
	public (bool) – (optional), determines if the authenticated user
sees both private and public or just public

	number (int) – (optional), number of events to return. Default: -1
returns all events available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
rename(login)

	Rename the user.

Note

This is only available for administrators of a GitHub Enterprise
instance.

	Parameters

	login (str) – (required), new name of the user

	Returns

	bool

	
revoke_impersonation()

	Revoke all impersonation tokens for the current user.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
starred_repositories(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by this user.

Changed in version 0.5: Added sort and direction parameters (optional) as per the change in
GitHub’s API.

	Parameters

	
	number (int) – (optional), number of starred repos to return.
Default: -1, returns all available repos

	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default:
‘desc’

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of StarredRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by this user.

	Parameters

	
	number (int) – (optional), number of subscriptions to return.
Default: -1, returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
suspend()

	Suspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
unsuspend()

	Unsuspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
class github3.users.User(json, session)

	Object for the full representation of a User.

GitHub’s API returns different amounts of information about users based
upon how that information is retrieved. This object exists to represent
the full amount of information returned for a specific user. For example,
you would receive this class when calling
user(). To provide a clear distinction
between the types of users, github3.py uses different classes with
different sets of attributes.

This object no longer contains information about the currently
authenticated user (e.g., me()).

Changed in version 1.0.0.

This object contains all of the attributes available on
ShortUser as well as the following:

	
bio

	The markdown formatted User’s biography

	
blog

	The URL of the user’s blog

	
company

	The name or GitHub handle of the user’s company

	
created_at

	A parsed datetime object representing the date the
user was created

	
email

	The email address the user has on their public profile page

	
followers_count

	The number of followers of this user

	
following_count

	The number of users this user follows

	
hireable

	Whether or not the user has opted into GitHub jobs advertising

	
location

	The location specified by the user on their public profile

	
name

	The name specified by their user on their public profile

	
public_gists_count

	The number of public gists owned by this user

	
updated_at

	A parsed datetime object representing the date
the user was last updated

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete the user.

Per GitHub API documentation, it is often preferable to suspend the
user.

Note

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
demote()

	Demote a site administrator to simple user.

You can demote any user account except your own.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
events(public=False, number=-1, etag=None)

	Iterate over events performed by this user.

	Parameters

	
	public (bool) – (optional), only list public events for the
authenticated user

	number (int) – (optional), number of events to return. Default: -1
returns all available events.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
followers(number=-1, etag=None)

	Iterate over the followers of this user.

	Parameters

	
	number (int) – (optional), number of followers to return. Default:
-1 returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
following(number=-1, etag=None)

	Iterate over the users being followed by this user.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1
returns all available users

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of this user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of GPGKeys

	
impersonate(scopes=None)

	Obtain an impersonation token for the user.

The retrieved token will allow impersonation of the user.
This is only available for admins of a GitHub Enterprise instance.

	Parameters

	scopes (list) – (optional), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	Returns

	Authorization

	
is_assignee_on(username, repository)

	Check if this user can be assigned to issues on username/repository.

	Parameters

	
	username (str) – owner’s username of the repository

	repository (str) – name of the repository

	Returns

	True if the use can be assigned, False otherwise

	Return type

	bool

	
is_following(username)

	Check if this user is following username.

	Parameters

	username (str) – (required)

	Returns

	bool

	
keys(number=-1, etag=None)

	Iterate over the public keys of this user.

New in version 0.5.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Keys

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
organization_events(org, number=-1, etag=None)

	Iterate over events from the user’s organization dashboard.

Note

You must be authenticated to view this.

	Parameters

	
	org (str) – (required), name of the organization

	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
organizations(number=-1, etag=None)

	Iterate over organizations the user is member of.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organization

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganizations

	
promote()

	Promote a user to site administrator.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
received_events(public=False, number=-1, etag=None)

	Iterate over events that the user has received.

If the user is the authenticated user, you will see private and public
events, otherwise you will only see public events.

	Parameters

	
	public (bool) – (optional), determines if the authenticated user
sees both private and public or just public

	number (int) – (optional), number of events to return. Default: -1
returns all events available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
rename(login)

	Rename the user.

Note

This is only available for administrators of a GitHub Enterprise
instance.

	Parameters

	login (str) – (required), new name of the user

	Returns

	bool

	
revoke_impersonation()

	Revoke all impersonation tokens for the current user.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
starred_repositories(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by this user.

Changed in version 0.5: Added sort and direction parameters (optional) as per the change in
GitHub’s API.

	Parameters

	
	number (int) – (optional), number of starred repos to return.
Default: -1, returns all available repos

	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default:
‘desc’

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of StarredRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by this user.

	Parameters

	
	number (int) – (optional), number of subscriptions to return.
Default: -1, returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
suspend()

	Suspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
unsuspend()

	Unsuspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
class github3.users.AuthenticatedUser(json, session)

	Object to represent the currently authenticated user.

This is returned by me(). It contains the
extra informtation that is not returned for other users such as the
currently authenticated user’s plan and private email information.

New in version 1.0.0.

Changed in version 1.0.0: The total_private_gists attribute is no longer returned by
GitHub’s API and so is removed.

This object has all of the same attribute as the
ShortUser and User objects
as well as:

	
disk_usage

	The amount of repository space that has been used by you, the user

	
owned_private_repos_count

	The number of private repositories owned by you, the user

	
plan

	
Note

When used with a Github Enterprise instance <= 2.12.7, this
attribute will not be returned. To handle these situations
sensitively, the attribute will be set to None.
Repositories may still have a license associated with them
in these cases.

The name of the plan that you, the user, have purchased

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete the user.

Per GitHub API documentation, it is often preferable to suspend the
user.

Note

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
demote()

	Demote a site administrator to simple user.

You can demote any user account except your own.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
events(public=False, number=-1, etag=None)

	Iterate over events performed by this user.

	Parameters

	
	public (bool) – (optional), only list public events for the
authenticated user

	number (int) – (optional), number of events to return. Default: -1
returns all available events.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
followers(number=-1, etag=None)

	Iterate over the followers of this user.

	Parameters

	
	number (int) – (optional), number of followers to return. Default:
-1 returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
following(number=-1, etag=None)

	Iterate over the users being followed by this user.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1
returns all available users

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of this user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of GPGKeys

	
impersonate(scopes=None)

	Obtain an impersonation token for the user.

The retrieved token will allow impersonation of the user.
This is only available for admins of a GitHub Enterprise instance.

	Parameters

	scopes (list) – (optional), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	Returns

	Authorization

	
is_assignee_on(username, repository)

	Check if this user can be assigned to issues on username/repository.

	Parameters

	
	username (str) – owner’s username of the repository

	repository (str) – name of the repository

	Returns

	True if the use can be assigned, False otherwise

	Return type

	bool

	
is_following(username)

	Check if this user is following username.

	Parameters

	username (str) – (required)

	Returns

	bool

	
keys(number=-1, etag=None)

	Iterate over the public keys of this user.

New in version 0.5.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Keys

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
organization_events(org, number=-1, etag=None)

	Iterate over events from the user’s organization dashboard.

Note

You must be authenticated to view this.

	Parameters

	
	org (str) – (required), name of the organization

	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
organizations(number=-1, etag=None)

	Iterate over organizations the user is member of.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organization

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganizations

	
promote()

	Promote a user to site administrator.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
received_events(public=False, number=-1, etag=None)

	Iterate over events that the user has received.

If the user is the authenticated user, you will see private and public
events, otherwise you will only see public events.

	Parameters

	
	public (bool) – (optional), determines if the authenticated user
sees both private and public or just public

	number (int) – (optional), number of events to return. Default: -1
returns all events available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
rename(login)

	Rename the user.

Note

This is only available for administrators of a GitHub Enterprise
instance.

	Parameters

	login (str) – (required), new name of the user

	Returns

	bool

	
revoke_impersonation()

	Revoke all impersonation tokens for the current user.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
starred_repositories(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by this user.

Changed in version 0.5: Added sort and direction parameters (optional) as per the change in
GitHub’s API.

	Parameters

	
	number (int) – (optional), number of starred repos to return.
Default: -1, returns all available repos

	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default:
‘desc’

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of StarredRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by this user.

	Parameters

	
	number (int) – (optional), number of subscriptions to return.
Default: -1, returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
suspend()

	Suspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
unsuspend()

	Unsuspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
class github3.users.Collaborator(json, session)

	Object for the representation of a collaborator.

New in version 1.1.0.

When retrieving a repository’s contributors, GitHub returns the same
information as a ShortUser with an additional
attribute:

	
permissions

	Admin, push, and pull permissions of a collaborator

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete the user.

Per GitHub API documentation, it is often preferable to suspend the
user.

Note

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
demote()

	Demote a site administrator to simple user.

You can demote any user account except your own.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
events(public=False, number=-1, etag=None)

	Iterate over events performed by this user.

	Parameters

	
	public (bool) – (optional), only list public events for the
authenticated user

	number (int) – (optional), number of events to return. Default: -1
returns all available events.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
followers(number=-1, etag=None)

	Iterate over the followers of this user.

	Parameters

	
	number (int) – (optional), number of followers to return. Default:
-1 returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
following(number=-1, etag=None)

	Iterate over the users being followed by this user.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1
returns all available users

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of this user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of GPGKeys

	
impersonate(scopes=None)

	Obtain an impersonation token for the user.

The retrieved token will allow impersonation of the user.
This is only available for admins of a GitHub Enterprise instance.

	Parameters

	scopes (list) – (optional), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	Returns

	Authorization

	
is_assignee_on(username, repository)

	Check if this user can be assigned to issues on username/repository.

	Parameters

	
	username (str) – owner’s username of the repository

	repository (str) – name of the repository

	Returns

	True if the use can be assigned, False otherwise

	Return type

	bool

	
is_following(username)

	Check if this user is following username.

	Parameters

	username (str) – (required)

	Returns

	bool

	
keys(number=-1, etag=None)

	Iterate over the public keys of this user.

New in version 0.5.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Keys

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
organization_events(org, number=-1, etag=None)

	Iterate over events from the user’s organization dashboard.

Note

You must be authenticated to view this.

	Parameters

	
	org (str) – (required), name of the organization

	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
organizations(number=-1, etag=None)

	Iterate over organizations the user is member of.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organization

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganizations

	
promote()

	Promote a user to site administrator.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
received_events(public=False, number=-1, etag=None)

	Iterate over events that the user has received.

If the user is the authenticated user, you will see private and public
events, otherwise you will only see public events.

	Parameters

	
	public (bool) – (optional), determines if the authenticated user
sees both private and public or just public

	number (int) – (optional), number of events to return. Default: -1
returns all events available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
rename(login)

	Rename the user.

Note

This is only available for administrators of a GitHub Enterprise
instance.

	Parameters

	login (str) – (required), new name of the user

	Returns

	bool

	
revoke_impersonation()

	Revoke all impersonation tokens for the current user.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
starred_repositories(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by this user.

Changed in version 0.5: Added sort and direction parameters (optional) as per the change in
GitHub’s API.

	Parameters

	
	number (int) – (optional), number of starred repos to return.
Default: -1, returns all available repos

	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default:
‘desc’

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of StarredRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by this user.

	Parameters

	
	number (int) – (optional), number of subscriptions to return.
Default: -1, returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
suspend()

	Suspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
unsuspend()

	Unsuspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
class github3.users.Contributor(json, session)

	Object for the specialized representation of a contributor.

New in version 1.0.0.

Changed in version 1.1.0: This class now refreshes to a User.

The attribute contributions was renamed to contributions_count,
the documentation already declared it as contributions_count, it
was the implementation now reflects this as well.

When retrieving a repository’s contributors, GitHub returns the same
information as a ShortUser with an additional
attribute:

	
contributions_count

	The number of contributions a contributor has made to the repository

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete the user.

Per GitHub API documentation, it is often preferable to suspend the
user.

Note

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
demote()

	Demote a site administrator to simple user.

You can demote any user account except your own.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
events(public=False, number=-1, etag=None)

	Iterate over events performed by this user.

	Parameters

	
	public (bool) – (optional), only list public events for the
authenticated user

	number (int) – (optional), number of events to return. Default: -1
returns all available events.

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
followers(number=-1, etag=None)

	Iterate over the followers of this user.

	Parameters

	
	number (int) – (optional), number of followers to return. Default:
-1 returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
following(number=-1, etag=None)

	Iterate over the users being followed by this user.

	Parameters

	
	number (int) – (optional), number of users to return. Default: -1
returns all available users

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Users

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
gpg_keys(number=-1, etag=None)

	Iterate over the GPG keys of this user.

New in version 1.2.0.

	Parameters

	
	number (int) – (optional), number of GPG keys to return. Default:
-1 returns all available GPG keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of GPGKeys

	
impersonate(scopes=None)

	Obtain an impersonation token for the user.

The retrieved token will allow impersonation of the user.
This is only available for admins of a GitHub Enterprise instance.

	Parameters

	scopes (list) – (optional), areas you want this token to apply to,
i.e., ‘gist’, ‘user’

	Returns

	Authorization

	
is_assignee_on(username, repository)

	Check if this user can be assigned to issues on username/repository.

	Parameters

	
	username (str) – owner’s username of the repository

	repository (str) – name of the repository

	Returns

	True if the use can be assigned, False otherwise

	Return type

	bool

	
is_following(username)

	Check if this user is following username.

	Parameters

	username (str) – (required)

	Returns

	bool

	
keys(number=-1, etag=None)

	Iterate over the public keys of this user.

New in version 0.5.

	Parameters

	
	number (int) – (optional), number of keys to return. Default: -1
returns all available keys

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Keys

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
organization_events(org, number=-1, etag=None)

	Iterate over events from the user’s organization dashboard.

Note

You must be authenticated to view this.

	Parameters

	
	org (str) – (required), name of the organization

	number (int) – (optional), number of events to return. Default: -1
returns all available events

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
organizations(number=-1, etag=None)

	Iterate over organizations the user is member of.

	Parameters

	
	number (int) – (optional), number of organizations to return.
Default: -1 returns all available organization

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of
ShortOrganizations

	
promote()

	Promote a user to site administrator.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
received_events(public=False, number=-1, etag=None)

	Iterate over events that the user has received.

If the user is the authenticated user, you will see private and public
events, otherwise you will only see public events.

	Parameters

	
	public (bool) – (optional), determines if the authenticated user
sees both private and public or just public

	number (int) – (optional), number of events to return. Default: -1
returns all events available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Events

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
rename(login)

	Rename the user.

Note

This is only available for administrators of a GitHub Enterprise
instance.

	Parameters

	login (str) – (required), new name of the user

	Returns

	bool

	
revoke_impersonation()

	Revoke all impersonation tokens for the current user.

This is only available for admins of a GitHub Enterprise instance.

	Returns

	bool – True if successful, False otherwise

	
starred_repositories(sort=None, direction=None, number=-1, etag=None)

	Iterate over repositories starred by this user.

Changed in version 0.5: Added sort and direction parameters (optional) as per the change in
GitHub’s API.

	Parameters

	
	number (int) – (optional), number of starred repos to return.
Default: -1, returns all available repos

	sort (str) – (optional), either ‘created’ (when the star was
created) or ‘updated’ (when the repository was last pushed to)

	direction (str) – (optional), either ‘asc’ or ‘desc’. Default:
‘desc’

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of StarredRepository

	
subscriptions(number=-1, etag=None)

	Iterate over repositories subscribed to by this user.

	Parameters

	
	number (int) – (optional), number of subscriptions to return.
Default: -1, returns all available

	etag (str) – (optional), ETag from a previous request to the same
endpoint

	Returns

	generator of Repository

	
suspend()

	Suspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

	
unsuspend()

	Unsuspend the user.

This is only available for admins of a GitHub Enterprise instance.

This API is disabled if you use LDAP, check the GitHub API dos for more
information.

	Returns

	bool – True if successful, False otherwise

AuthenticatedUser Peripherals

	
class github3.users.Key(json, session)

	The object representing a user’s SSH key.

Please see GitHub’s Key Documentation [http://developer.github.com/v3/users/keys/] for more information.

Changed in version 1.0.0: Removed title attribute

	
key

	A string containing the actual text of the SSH Key

	
id

	GitHub’s unique ID for this key

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
delete()

	Delete this key.

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
update(title, key)

	Update this key.

Warning

As of 20 June 2014, the API considers keys to be immutable.
This will soon begin to return MethodNotAllowed errors.

	Parameters

	
	title (str) – (required), title of the key

	key (str) – (required), text of the key file

	Returns

	bool

	
class github3.users.Plan(json, session)

	The Plan object.

Please see GitHub’s Authenticated User [http://developer.github.com/v3/users/#get-the-authenticated-user] documentation for more details.

	
collaborators_count

	
Changed in version 1.0.0.

The number of collaborators allowed on this plan

	
name

	The name of the plan on GitHub

	
private_repos_count

	
Changed in version 1.0.0.

The number of allowed private repositories

	
space

	The amount of space allotted by this plan

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
is_free()

	Check if this is a free plan.

	Returns

	bool

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

	
class github3.users.Email(json, session)

	The object used to represent an AuthenticatedUser’s email.

Please see GitHub’s Emails documentation [https://developer.github.com/v3/users/emails/] for more information.

This object has all of the attributes of ShortEmail as well as
the following attributes:

	
primary

	A boolean value representing whether the address is the primary
address for the user or not

	
visibility

	A string value representing whether an authenticated user can view the
email address. Use public to allow it, private to disallow it.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Decorators

This part of the documentation covers the decorators module which contains all
of the decorators used in github3.py.

Warning

These decorators are only to be used internally in development of this
library.

Decorator Functions

	
github3.decorators.requires_auth(x)

	

	
github3.decorators.requires_basic_auth(x)

	

	
github3.decorators.requires_app_credentials(func)

	Require client_id and client_secret to be associated.

This is used to note and enforce which methods require a client_id and
client_secret to be used.

Models

This part of the documentation covers a lot of lower-level objects that are
never directly seen or used by the user (developer). They are documented for
future developers of this library.

Warning

These classes are only to be used internally in development of this
library.

	
class github3.models.GitHubCore(json, session)

	The base object for all objects that require a session.

The GitHubCore object provides some
basic attributes and methods to other sub-classes that are very useful to
have.

	
as_dict()

	Return the attributes for this object as a dictionary.

This is equivalent to calling:

json.loads(obj.as_json())

	Returns

	this object’s attributes serialized to a dictionary

	Return type

	dict

	
as_json()

	Return the json data for this object.

This is equivalent to calling:

json.dumps(obj.as_dict())

	Returns

	this object’s attributes as a JSON string

	Return type

	str

	
classmethod from_dict(json_dict, session)

	Return an instance of this class formed from json_dict.

	
classmethod from_json(json, session)

	Return an instance of this class formed from json.

	
new_session()

	Generate a new session.

	Returns

	A brand new session

	Return type

	GitHubSession

	
ratelimit_remaining

	Number of requests before GitHub imposes a ratelimit.

	Returns

	int

	
refresh(conditional=False)

	Re-retrieve the information for this object.

The reasoning for the return value is the following example:

repos = [r.refresh() for r in g.repositories_by('kennethreitz')]

Without the return value, that would be an array of None’s and you
would otherwise have to do:

repos = [r for i in g.repositories_by('kennethreitz')]
[r.refresh() for r in repos]

Which is really an anti-pattern.

Changed in version 0.5.

	Parameters

	conditional (bool) – If True, then we will search for a stored
header (‘Last-Modified’, or ‘ETag’) on the object and send that
as described in the Conditional Requests [http://developer.github.com/v3/#conditional-requests] section of the docs

	Returns

	self

Release Notes and History

All of the release notes that have been recorded for github3.py are organized
here with the newest releases first.

1.x Release Series

	1.2.0: 2018-08-22
	Features Added

	Bugs Fixed

	Special Thanks

	1.1.0: 2018-04-09
	Features Added

	Bugs Fixed

	1.0.2: 2018-03-28
	Bugs Fixed

	1.0.1: 2018-03-14
	Bugs Fixed

	1.0.0: 2018-03-13
	Breaking Changes

	New Features

	Bugs Fixed

	Deprecations and Other Changes

0.x Release Series

	0.9.3: 2014-11-04

	0.9.2: 2014-10-05

	0.9.1: 2014-08-10

	0.9.0: 2014-05-04

	0.8.2: 2014-02-11

	0.8.1: 2014-01-26

	0.8.0: 2014-01-03

	0.7.1: 2013-09-30

	0.7.0: 2013-05-19

	0.6.1: 2013-04-06

	0.6.0: 2013-04-05

	0.5.3: 2013-03-19

	0.5.2: 2013-03-02

	0.5.1: 2013-02-21

	0.5.0: 2013-02-16

	0.4.0: 2013-01-16

	0.3.0: 2013-01-01

	0.2.0: 2012-11-21

	0.1.0: 2012-11-13

	0.1b2: 2012-11-10

	0.1b1: 2012-10-31

	0.1b0: 2012-10-06

1.2.0: 2018-08-22

This is a larger release with some enhancements and bug fixes.

Features Added

	Partial GitHub Apps support. We added the following:

	GitHub.login_as_app to login using JWT as an Application

	GitHub.login_as_app_installation to login using a token obtained from
an App’s JWT

	GitHub.app to retrieve an application by its “slug”

	GitHub.app_installation to retrieve a specific installation by its ID

	GitHub.app_installations to retrieve all of an App’s installations

	GitHub.app_installation_for_organization to retrieve an organization’s
installation of an App

	GitHub.app_installation_for_repository to retrieve an installation for
a specific repository

	GitHub.app_installation_for_user to retrieve an installation for a
specific user

	GitHub.authenticated_app to retrieve the metadata for a specific App

	Not supported as of this release:

	Installations API [https://developer.github.com/v3/apps/installations/]

	List installations for user [https://developer.github.com/v3/apps/#list-installations-for-user]

	User-to-server OAuth access token [https://developer.github.com/apps/building-github-apps/identifying-and-authorizing-users-for-github-apps/#identifying-users-on-your-site]

	Organization Invitations Preview API is now supported. This includes an
additional Invitation object. This is the result of hard work by Hal
Wine.

	A ShortLabel class was added to represent the shorter (description-less)
representation of labels returned by the API.

	The branch protections API is now completely represented in github3.py.

	We now support the GPG Keys API.

	We now support the Commit Search API.

	We now support Repository Invitations.

	We now have assign and unassign methods that support assigning and
unassigning multiple users at once.

	We now support review requests on Pull Requests.

	We now support the ability for a user to activate their membership in an
Organization.

	We now support recurisvely traverse a tree via the API.

	We now support enabling or disabling projects on a Repository.

	We now support editing and reading Repository topics.

	We now support Repository Pull Request merge settings.

Bugs Fixed

	No longer require a Gist to have an owner.

	Branch.latest_sha() now returns text (unicode) as documented.

Special Thanks

A great deal of the exception feature work done above was performed by the
newest team member of the github3.py project: Jacopo Notarstefano (a.k.a,
@jacquerie on GitHub). This project has had new life breathed into it
thanks to Jacopo.

1.1.0: 2018-04-09

This is a small release with some enhancements.

Features Added

	Repository collaborators now returns a users.Collaborator object, instead
of a users.ShortUser object. This is to support collaborator
affiliations. A refresh call of this object (and users.Contributor) will
result in a full users.User object.

	The call to iterate collaborators of a repository
(Repository#collaborators) can now take an affiliation filter with
options of outside, direct, and all. The default is all,
which preserves the previous behavior of this method.

Bugs Fixed

	Parse certain attributes on IssueEvent into objects (again, this was a
regression in 1.0)

	Handle older GitHub Enterprise responses for authenticated user objects

	Handle large file pull request responses not including a patch attribute

1.0.2: 2018-03-28

Bugs Fixed

	Handle 304s from users passing etag

	Generate _api attribute for ShortBranch objects

	Require auth for creating gists

	Ensure only desired auth scheme is used with requests

	Handle older GitHub Enterprise responses for repository objects

1.0.1: 2018-03-14

Bugs Fixed

	Fix missing python-dateutil requirement when installing from a wheel.

1.0.0: 2018-03-13

1.0.0 is a huge release. It includes a great deal of changes to github3.py.
It is suggested you read the following release notes carefully.

Unfortunately, it’s plausible that some things have slipped through the cracks
in these release notes.

Breaking Changes

	Methods that iterate over collections return a separate class than methods
that retrieve a single instance. These objects have separate representations
when retrieving the data from GitHub’s API. They include:

	Team now can be represented by ShortTeam or Team

	Organization now can be represented by ShortOrganization or Organization

	Issue now can be represented by ShortIssue or Issue

	PullRequest now can be represented by ShortPullRequest or PullRequest

	Commit now can be represented by ShortCommit, or Commit

	Gist now can be represented by ShortGist, GistFork, or Gist

	GistFile now can be represented by ShortGistFile or GistFile

	Repository objects:

	Branch now can be represented by ShortBranch or Branch

	RepoComment now can be represented by ShortComment or ShortRepoComment

	Repository now can be represented by ShortRepository or Repository

	RepoCommit now can be represented by MiniCommit, ShortCommit, or
RepoCommit

	Status now can be represented by ShortStatus or Status

	User now can be represented by ShortUser, Contributor, User, or
AuthenticatedUser

	License now can be represented by ShortLicense or License

	Refreshing a short representation of an object will result in a new object
of a new class returned. For example:

import github3
users = [(u, u.refresh()) for u in github3.all_users(10)]
for short_user, user in users:
 assert isinstance(short_user, github3.users.ShortUser)
 assert isinstance(user, github3.users.User)

	Remove Thread.comment, Thread.thread, Thread.urls attributes.

	Remove Thread#is_unread method. Use the Thread.unread attribute
instead.

	Subscription has been split into two objects: ThreadSubscription and
RepositorySubscription with the same methods.

	Remove is_ignored method from our Subscription objects. Use the
ignored attribute instead.

	Remove is_subscribed method from our Subscription objects. Use the
subscribed attribute instead.

	Move Users#add_email_addresses to GitHub#add_email_addresses.

	Move Users#delete_email_addresses to GitHub#delete_email_addresses.

	Remove Users#add_email_address and Users#delete_email_address.

	Remove Repository#update_label.

	When you download a release asset, instead of returning True or
False, it will return the name of the file in which it saved the asset.

	The download method on github3.pulls.PullFile instances has been
removed.

	The contents method on github3.pulls.PullFile instances now return
instances of github3.repos.contents.Contents.

	Replace Repository#comments_on_commit with RepoCommit#comments.

	Organization#add_member has been changed. The second parameter has been
changed to team_id and now expects an integer.

	Organization#add_repository has been changed. The second parameter has
been changed to team_id and now expects an integer.

	All methods and functions starting with iter_ have been renamed.

	Old name

	New name

	github3.iter_all_repos

	github3.all_repositories

	github3.iter_all_users

	github3.all_users

	github3.iter_events

	github3.all_events

	github3.iter_followers

	github3.followers_of

	github3.iter_following

	github3.followed_by

	github3.iter_repo_issues

	github3.issues_on

	github3.iter_orgs

	github3.organizations_with

	github3.iter_user_repos

	github3.repositories_by

	github3.iter_starred

	github3.starred_by

	github3.iter_subscriptions

	github3.subscriptions_for

	Deployment#iter_statuses

	Deployment#statuses

	Gist#iter_comments

	Gist#comments

	Gist#iter_commits

	Gist#commits

	Gist#iter_files

	Gist#files

	Gist#iter_forks

	Gist#forks

	GitHub#iter_all_repos

	GitHub#all_repositories

	GitHub#iter_all_users

	GitHub#all_users

	GitHub#iter_authorizations

	GitHub#authorizations

	GitHub#iter_emails

	GitHub#emails

	GitHub#iter_events

	GitHub#events

	GitHub#iter_followers

	GitHub#{followers,followers_of}

	GitHub#iter_following

	GitHub#{following,followed_by}

	GitHub#iter_gists

	GitHub#{gists,gists_by,public_gists}

	GitHub#iter_notifications

	GitHub#notifications

	GitHub#iter_org_issues

	GitHub#organization_issues

	GitHub#iter_issues

	GitHub#issues

	GitHub#iter_user_issues

	GitHub#user_issues

	GitHub#iter_repo_issues

	GitHub#issues_on

	GitHub#iter_keys

	GitHub#keys

	GitHub#iter_orgs

	GitHub#{organizations,organizations_with}

	GitHub#iter_repos

	GitHub#reposistories

	GitHub#iter_user_repos

	GitHub#repositories_by

	GitHub#iter_user_teams

	GitHub#user_teams

	Issue#iter_comments

	Issue#comments

	Issue#iter_events

	Issue#events

	Issue#iter_labels

	Issue#labels

	Milestone#iter_labels

	Milestone#labels

	Organization#iter_members

	Organization#members

	Organization#iter_public_members

	Organization#public_members

	Organization#iter_repos

	Organization#repositories

	Organization#iter_teams

	Organization#teams

	PullRequest#iter_comments

	PullRequest#review_comments

	PullRequest#iter_commits

	PullRequest#commits

	PullRequest#iter_files

	PullRequest#files

	PullRequest#iter_issue_comments

	PullRequest#issue_comments

	Team#iter_members

	Team#members

	Team#iter_repos

	Team#repositories

	Repository#iter_assignees

	Repository#assignees

	Repository#iter_branches

	Repository#branches

	Repository#iter_code_frequency

	Repository#code_frequency

	Repository#iter_collaborators

	Repository#collaborators

	Repository#iter_comments

	Repository#comments

	Repository#iter_comments_on_commit

	RepoCommit#comments

	Repository#iter_commit_activity

	Repository#commit_activity

	Repository#iter_commits

	Repository#commits

	Repository#iter_contributor_statistics

	Repository#contributor_statistics

	Repository#iter_contributors

	Repository#contributors

	Repository#iter_forks

	Repository#forks

	Repository#iter_hooks

	Repository#hooks

	Repository#iter_issues

	Repository#issues

	Repository#iter_issue_events

	Repository#issue_events

	Repository#iter_keys

	Repository#keys

	Repository#iter_labels

	Repository#labels

	Repository#iter_languages

	Repository#languages

	Repository#iter_milestones

	Repository#milestones

	Repository#iter_network_events

	Repository#network_events

	Repository#iter_notifications

	Repository#notifications

	Repository#iter_pages_builds

	Repository#pages_builds

	Repository#iter_pulls

	Repository#pull_requests

	Repository#iter_refs

	Repository#refs

	Repository#iter_releases

	Repository#releases

	Repository#iter_stargazers

	Repository#stargazers

	Repository#iter_subscribers

	Repository#subscribers

	Repository#iter_statuses

	Repository#statuses

	Repository#iter_tags

	Repository#tags

	Repository#iter_teams

	Repository#teams

	Repository#iter_teams

	Repository#teams

	User#iter_events

	User#events

	User#iter_followers

	User#followers

	User#iter_following

	User#following

	User#iter_keys

	User#keys

	User#iter_org_events

	User#organization_events

	User#iter_received_events

	User#received_events

	User#iter_orgs

	User#organizations

	User#iter_starred

	User#starred_repositories

	User#iter_subscriptions

	User#subscriptions

	github3.login has been simplified and split into two functions:

	github3.login serves the majority use case and only provides an
authenticated GitHub object.

	github3.enterprise_login allows GitHub Enterprise users to log into
their service.

	GitHub#iter_followers was split into two functions:

	GitHub#followers_of which iterates over all of the followers of a user
whose username you provide

	GitHub#followers which iterates over all of the followers of the
authenticated user

	GitHub#iter_following was split into two functions:

	GitHub#followed_by which iterates over all of the users followed by
the username you provide

	GitHub#following which iterates over all of the users followed by the
authenticated user

	GitHub#iter_gists was split into three functions:

	GitHub#public_gists which iterates over all of the public gists on
GitHub

	GitHub#gists_for which iterates over all the public gists of a
specific user

	GitHub#gists which iterates over the authenticated users gists

	GitHub#iter_orgs was split into two functions:

	GitHub#organizations which iterates over the authenticated user’s
organization memberships

	GitHub#organizations_with which iterates over the given user’s
organization memberships

	GitHub#iter_subscriptions was split into two functions:

	GitHub#subscriptions_for which iterates over an arbitrary user’s
subscriptions

	GitHub#subscriptions which iterates over the authenticated user’s
subscriptions

	GitHub#iter_starred was split into two functions:

	GitHub#starred_by which iterates over an arbitrary user’s stars

	GitHub#starred which iterates over the authenticated user’s stars

	GitHub#user was split into two functions:

	GitHub#user which retrieves an arbitrary user’s information

	GitHub#me which retrieves the authenticated user’s information

	GitHub#update_user has been renamed to GitHub#update_me and only
uses 1 API call now. It was renamed to reflect the addition of
GitHub#me.

	The legacy watching API has been removed:

	GitHub#subscribe

	GitHub#unsubscribe

	GitHub#is_subscribed

	GitHub#create_repo was renamed to GitHub#create_repository

	GitHub#delete_key was removed. To delete a key retrieve it with
GitHub#key and then call Key#delete.

	Repository#set_subscription was split into two simpler functions

	Repository#subscribe subscribes the authenticated user to the
repository’s notifications

	Repository#ignore ignores notifications from the repository for the
authenticated user

	Repository#contents was split into two simpler functions

	Repository#file_contents returns the contents of a file object

	Repository#directory_contents returns the contents of files in a
directory.

	Organization#add_repo and Team#add_repo have been renamed to
Organization#add_repository and Team#add_repository respectively.

	Organization#create_repo has been renamed to
Organization#create_repository. It no longer accepts has_downloads.
It now accepts license_template.

	Organization#remove_repo has been renamed to
Organization#remove_repository. It now accepts team_id instead of
team.

	github3.ratelimit_remaining was removed

	GitHub instances can no longer be used as context managers

	The pull request API has changed.

	The links attribute now contains the raw _links attribute from the
API.

	The merge_commit_sha attribute has been removed since it was deprecated
in the GitHub API.

	To present a more consistent universal API, certain attributes have been
renamed.

	Old name

	New attribute name

	PullFile.additions

	additions_count

	PullFile.deletions

	deletions_count

	PullFile.changes

	changes_count

	PullRequest.additions

	additions_count

	PullRequest.comments

	comments_count

	PullRequest.commits

	commits_count

	PullRequest.deletions

	deletions_count

	PullRequest.review_comments

	review_comments_count

	The Gist API has changed.

	The forks and files attributes that used to keep count of the
number of forks and files have been removed.

	The comments attribute which provided the number of comments on a
gist, has been renamed to comments_count.

	The is_public method has been removed since it just returned the
Gist.public attribute.

	Most instances of login as a parameter have been changed to username
for clarity and consistency. This affects the following methods:

	github3.authorize

	github3.repositories_by

	github3.user

	GitHub

	GitHub#authorize

	GitHub#follow

	GitHub#is_following

	GitHub#is_starred

	GitHub#issue

	GitHub#followers_of

	GitHub#followed_by

	GitHub#gists_by

	GitHub#issues_on

	GitHub#organizations_with

	GitHub#starred_by

	GitHub#subscriptions_for

	GitHub#user

	GitHubEnterprise

	Issue#assign

	Organization#add_member

	Organization#is_member

	Organization#is_public_member

	Organization#remove_member

	Repository#add_collaborator

	Repository#is_assignee

	Repository#is_collaborator

	Repository#remove_collaborator

	Team#add_member

	Team#is_member

	User#is_assignee_on

	User#is_following

	Repository.stargazers is now Repository.stargazers_count (conforming
with the attribute name returned by the API).

	The Issue API has changed in order to provide a more consistent attribute
API. Issue.comments is now Issue.comments_count and returns the
number of comments on an issue.

	The Issue.labels attribute has also been renamed. It is now available
from Issue.original_labels. This will provide the user with the list of
Label objects that was returned by the API. To retrieve an updated list
of labels, the user can now use Issue#labels, e.g.

i = github3.issue('sigmavirus24', 'github3.py', 30)
labels = list(i.labels())

	The Organization and User APIs have changed to become more
consistent with the rest of the library and GitHub API. The following
attribute names have been changed

	Old name

	New attribute name

	Organization.followers

	followers_count

	Organization.following

	following_count

	Organization.public_repos

	public_repos_count

	User.followers

	followers_count

	User.following

	following_count

	User.public_repos

	public_repos_count

	The Release.assets attribute has been renamed to
Release.original_assets. To retrieve up-to-date assets, use the
Release#assets method.

	The Authorization API has changed. The update method has been split
into three methods: add_scopes, remove_scopes, replace_scopes.
This highlights the fact that Authorization#update used to require more
than one request.

	Event#is_public has been removed. Simply check the event’s public
attribute instead.

	Repository#delete_file and Repository#update_file have been removed.
Simply delete or update a file using the Contents API.

	Content#delete now returns a dictionary that matches the JSON returned
by the API. It contains the Contents and the Commit associated with the
deletion.

	Content#update now returns a dictionary that matches the JSON returned
by the API. It contains the Contents and the Commit associated with the
deletion.

	Issue.pull_request has been renamed to Issue.pull_request_urls

New Features

	Most objects now have a session attribute. This is a subclass of a
Session object from requests. This can now be used in conjunction
with a third-party caching mechanism. The suggested caching library is
cachecontrol.

	All object’s url attribute are now available.

	You can now retrieve a repository by its id with
GitHub#repository_with_id.

	You can call the pull_request method on an Issue now to retrieve the
associated pull request:

import github3

i = github3.issue('sigmavirus24', 'github3.py', 301)
pr = i.pull_request()

	Add support for the Issue locking API currently in Preview Mode

	Add Organization#all_events.

	Add Tag.tagger_as_User which attempts to return the tagger as as User.

	Add Repo.statuses and a corresponding repo.status.CombinedStatus to

	Support filtering organization members by whether they have 2FA enabled.

	Support filtering organization and team members by role.

	Add GitHub#all_organizations.

	Add PullRequest#create_comment.

	Add Repository#release_by_tag_name to retrieve a Release from a
Repository by its associated tag name.

	Add Repository#latest_release to retrieve the latest Release for a
Repository.

	Add GitHub#license to retrieve a github3.license.License by the
license name.

	Add GitHub#licenses to iterate over all the licenses returned by
GitHub’s Licenses API.

	Add protection information to github3.repos.branch.Branch.

	Add Branch#protect and Branch#unprotect to support updating a
Branch’s protection status.

	Vastly improved GitHub Enterprise support:

	Add User#rename to rename a user in a GitHub Enterprise installation.

	Add GitHub#create_user to create a user.

	Add User#impersonate to create an impersonation token by an admin for
a particular user.

	Add User#revoke_impersonation to revoke all impersonation tokens for a
user.

	Add User#promote to promote a particular user to a site administrator.

	Add User#demote to demote a site administrator to a simple user.

	Add User#suspend to suspend a user’s account.

	Add User#unsuspend to reinstate a user’s account.

	Add original_content attribute to a GistFile

	Add GistFile#content to retrieve the contents of a file in a gist from
the API.

	Add support for the alpha bulk issue import API [https://gist.github.com/jonmagic/5282384165e0f86ef105]

	You can now download a file in a pull request to a file on disk.

	You can retrieve the contents of the file in a pull request as bytes.

	Add id attribute to github3.repos.milestone.Milestone.

	Add support for sort, direction, and since parameters to the comments
method on github3.issues.Issue.

	Add branch argument to update and delete methods on
github3.repos.contents.Contents.

	Add permissions attribute to github3.repos.repo.Repository object to
retrieve the permissions for a specific repository.

	Allow a deployment to be retrieved by its id.

	Add the delete method to the github3.repos.release.Asset class.

Bugs Fixed

	Fix the dependencies and requirements. In 1.0.0a3 we moved to using the
setup.cfg file to define optional dependencies for wheels. By doing
so we accidentally left out our actual hard dependencies.

	The context parameter to Repository#create_status now properly
defaults to "default".

	Fix AttributeError when IssueEvent has assignee.

	Correctly set the message attribute on RepoCommit instances.

	Include browser_download_url on Asset instances.

	(Packaging related) Fix setup.py to use proper values for certain
parameters.

	Fix ValueError for Repository#create_file.

	Pull request files can now be downloaded even when the repository is
private.

	Fix exception when merging a pull request with an empty commit message.

	Add missing Issue events.

	Coerce review comment positions to integers.

Deprecations and Other Changes

	Deprecate Organization#events in favor of Organization#public_events.

	Fix test failures on Windows caused by unclosed file handles.
get a combined view of commit statuses for a given ref.

	The refresh method will eventually stop updating the instance in place
and instead only return new instances of objects.

0.9.3: 2014-11-04

	Backport of PullRequest#create_review_comment by Adrian Moisey

	Backport of PullRequest#review_comments by Adrian Moisey

	Backport of a fix that allows authenticated users to download Release
Assets. Original bug reported by Eugene Fidelin in issue #288.

	Documentation typo fix by Marc Abramowitz

0.9.2: 2014-10-05

	Updates for new team management [https://developer.github.com/changes/2014-09-23-one-more-week-before-the-add-team-member-api-breaking-change/] API changes

	Add Team#invite, Team#membership_for, and
Team#revoke_membership

	Deprecate Team#add_member, Team#remove_member, and
Organization#add_member.

	Update payload handler for TeamAddEvent.

0.9.1: 2014-08-10

	Correct Repository attribute fork_count should be forks_count

0.9.0: 2014-05-04

	Add Deployments API

	Add Pages API

	Add support so applications can revoke a single authorization [https://github3.readthedocs.io/en/latest/github.html#github3.github.GitHub.revoke_authorization] or all
authorizations [https://github3.readthedocs.io/en/latest/github.html#github3.github.GitHub.revoke_authorizations] created by the application

	Add the ability for users to ping [https://github3.readthedocs.io/en/latest/repos.html?highlight=ping#github3.repos.hook.Hook.ping] hooks

	Allow users to list a Repository’s collaborators [https://github3.readthedocs.io/en/latest/repos.html#github3.repos.repo.Repository.iter_collaborators]

	Allow users to create an empty blob on a Repository

	Update how users can list issues and pull requests. See:
http://developer.github.com/changes/2014-02-28-issue-and-pull-query-enhancements/
This includes breaking changes to Repository#iter_pulls.

	Update methods to handle the pagination changes [https://developer.github.com/changes/2014-03-18-paginating-method-changes/].

	Fix typo stargarzers_url [https://github.com/sigmavirus24/github3.py/pull/240]

	Add assets attribute to Release object.

	Fix wrong argument to Organization#create_team (permissions versus
permission)

	Fix Issue Search Result’s representation and initialization

	Fix Repository Search Result’s initialization

	Allow users to pass a two-factor authentication callback to
GitHub#authorize.

0.8.2: 2014-02-11

	Fix bug in GitHub#search_users (and github3.search_users). Thanks
@abesto

	Expose the stargazers count for repositories. Thanks @seveas

0.8.1: 2014-01-26

	Add documentation for using Two-factor Authentication

	Fix oversight where github3.login could not be used for 2FA

0.8.0: 2014-01-03

	Breaking Change Remove legacy search API

I realize this should have been scheduled for 1.0 but I was a bit eager to
remove this.

	Use Betamax to start recording integration tests

	Add support for Releases API

	Add support for Feeds API

	Add support for Two-Factor Authentication via the API

	Add support for New Search API

	Add github3.search_code, github3.search_issues,
github3.search_repositories, github3.search_users

	Add GitHub#search_code, GitHub#search_issues,
GitHub#search_repositories, GitHub#search_users

	Switch to requests >= 2.0

	Totally remove all references to the Downloads API

	Fix bug in Repository#update_file where branch was not being sent to
the API. Thanks @tpetr!

	Add GitHub#rate_limit to return all of the information from the
/rate_limit endpoint.

	Catch missing attributes – diff_hunk, original_commit_id – on
ReviewComment.

	Add support for the Emojis endpoint

	Note deprecation of a few object attributes

	Add support for the ReleaseEvent

	Add GitHub#iter_user_teams to return all of the teams the authenticated
user belongs to

0.7.1: 2013-09-30

	Add dependency on uritemplate.py [https://github.com/sigmavirus24/uritemplate] to add URITemplates to different classes.
See the documentation for attributes which are templates.

	Fixed issue trying to parse html_url on Pull Requests courtesy of
@rogerhu.

	Remove expecter as a test dependency courtesy of @esacteksab.

	Fixed issue #141 trying to find an Event that doesn’t exist.

0.7.0: 2013-05-19

	Fix Issue.close, Issue.reopen, and Issue.assign. (Issue #106)

	Add check_authorization to the GitHub class to cover the new part
of the API [http://developer.github.com/v3/oauth/#check-an-authorization].

	Add create_file, update_file, delete_file,
iter_contributor_statistics, iter_commit_activity,
iter_code_frequency and weekly_commit_count to the Repository
object.

	Add update and delete methods to the Contents object.

	Add is_following to the User object.

	Add head, base parameters to Repository.iter_pulls.

	The signature of Hook.edit has changed since that endpoint has changed
as well. See:
github/developer.github.com@b95f291a47954154a6a8cd7c2296cdda9b610164

	github3.GitHub can now be used as a context manager, e.g.,

with github.GitHub() as gh:
 u = gh.user('sigmavirus24')

0.6.1: 2013-04-06

	Add equality for labels courtesy of Alejandro Gomez (@alejandrogomez)

0.6.0: 2013-04-05

	Add sort and order parameters to github3.GitHub.search_users and
github3.GitHub.search_repos.

	Add iter_commits to github3.gists.Gist as a means of re-requesting
just the history from GitHub and iterating over it.

	Add minimal logging (e.g., logging.getLogger('github3'))

	Re-organize the library a bit. (Split up repos.py, issues.py, gists.py and a
few others into sub-modules for my sanity.)

	Calling refresh(True) on a github3.structs.GitHubIterator actually
works as expected now.

	API iter_ methods now accept the etag argument as the
GitHub.iter_ methods do.

	Make github3.octocat and github3.github.GitHub.octocat both support
sending messages to make the Octocat say things. (Think cowsay)

	Remove vendored dependency of PySO8601.

	Split GitHub.iter_repos into GitHub.iter_user_repos and
GitHub.iter_repos. As a consequence github3.iter_repos is now
github3.iter_user_repos

	IssueComment.update was corrected to match GitHub’s documentation

	github3.login now accepts an optional url parameter for users of the
GitHubEnterprise API, courtesy of Kristian Glass (@doismellburning)

	Several classes now allow their instances to be compared with == and
!=. In most cases this will check the unique id provided by GitHub. In
others, it will check SHAs and any other guaranteed immutable and unique
attribute. The class doc-strings all have information about this and details
about how equivalence is determined.

0.5.3: 2013-03-19

	Add missing optional parameter to Repository.contents. Thanks @tpetr

0.5.2: 2013-03-02

	Stop trying to decode the byte strings returned by b64decode. Fixes #72

0.5.1: 2013-02-21

	Hot fix an issue when a user doesn’t have a real name set

0.5.0: 2013-02-16

	100% (mock) test coverage

	Add support for the announced [https://github.com/blog/1402-upcoming-changes-to-github-services] meta [http://developer.github.com/v3/meta/] endpoint.

	Add support for conditional refreshing, e.g.,

import github3

u = github3.user('sigmavirus24')

some time later

u.refresh() # Will ALWAYS send a GET request and lower your rate limit
u.refresh(True) # Will send the GET with a header such that if nothing
 # has changed, it will not count against your rate limit
 # otherwise you'll get the updated user object.

	Add support for conditional iterables. What this means is that you can do:

import github3

i = github3.iter_all_repos(10)

for repo in i:
 # do stuff

i = github3.iter_all_repos(10, etag=i.etag)

And the second call will only give you the new repositories since the last
request. This mimics behavior in pengwynn/octokit [https://github.com/pengwynn/octokit]

	Add support for sortable stars [http://developer.github.com/changes/2013-2-13-sortable-stars/].

	In github3.users.User, iter_keys now allows you to iterate over any
user’s keys. No name is returned for each key. This is the equivalent of
visiting: github.com/:user.keys

	In github3.repos.Repository, pubsubhubbub has been removed. Use
github3.github.Github.pubsubhubbub instead

	In github3.api, iter_repo_issues’s signature has been corrected.

	Remove list_{labels, comments, events} methods from github3.issues.Issue

	Remove list_{comments, commits, files} methods from
github3.pulls.PullRequest

	In github3.gists.Gist:

	the user attribute was changed by GitHub and is now the owner
attribute

	the public attribute and the is_public method return the same
information. The method will be removed in the next version.

	the is_starred method now requires authentication

	the default refresh method is no longer over-ridden. In a change made
in before, a generic refresh method was added to most objects. This
was overridden in the Gist object and would cause otherwise unexpected
results.

	github3.events.Event.is_public() and github3.events.Event.public now
return the same information. In the next version, the former will be
removed.

	In github3.issues.Issue

	add_labels now returns the list of Labels on the issue instead of a
boolean.

	remove_label now returns a boolean.

	remove_all_labels and replace_labels now return lists. The former
should return an empty list on a successful call. The latter should
return a list of github3.issue.Label objects.

	Now we won’t get spurious GitHubErrors on 404s, only on other expected
errors whilst accessing the json in a response. All methods that return an
object can now actually return None if it gets a 404 instead of just
raising an exception. (Inspired by #49)

	GitHubStatus API now works.

0.4.0: 2013-01-16

	In github3.legacy.LegacyRepo

	has_{downloads,issues,wiki} are now attributes.

	is_private() and the private attribute return the same thing
is_private() will be deprecated in the next release.

	In github3.repos.Repository

	is_fork() is now deprecated in favor of the fork attribute

	is_private() is now deprecated in favor of the private attribute

	In github3.repos.Hook

	is_active() is now deprecated in favor of the active attribute

	In github3.pulls.PullRequest

	is_mergeable() is now deprecated in favor of the mergeable
attribute

	In github3.notifications.Thread

	is_unread() is now deprecated in favor of the unread

	pubsubhubbub() is now present on the GitHub object and will be
removed from the Repository object in the next release

	70% test coverage

0.3.0: 2013-01-01

	In github3.repos.Repository

	is_fork() and fork return the same thing

	is_private() and private return the same thing as well

	has_downloads, has_issues, has_wiki are now straight attributes

	In github3.repos.Hook

	is_active() and active return the same value

	In github3.pulls.PullRequest

	is_mergeable() and mergeable are now the same

	repository now returns a tuple of the login and name of the repository it
belongs to

	In github3.notifications.Thread

	is_unread() and unread are now the same

	In github3.gists

	GistFile.filename and GistFile.name return the same information

	Gist.history now lists the history of the gist

	GistHistory is an object representing one commit or version of the history

	You can retrieve gists at a specific version with GistHistory.get_gist()

	github3.orgs.Organization.iter_repos now accepts all types [http://developer.github.com/v3/repos/#list-organization-repositories]

	list_* methods on Organization objects that were missed are now deleted

	Some objects now have __str__ methods. You can now do things like:

import github3
u = github3.user('sigmavirus24')
r = github3.repository(u, 'github3.py')

And

import github3

repo = github3.repository('sigmavirus24', 'github3.py')

template = """Some kind of template where you mention this repository
{0}"""

print(template.format(repo))
Some kind of template where you mention this repository
sigmavirus24/github3.py

Current list of objects with this feature:

	github3.users.User (uses the login name)

	github3.users.Key (uses the key text)

	github3.users.Repository (uses the login/name pair)

	github3.users.RepoTag (uses the tag name)

	github3.users.Contents (uses the decoded content)

	60% test coverage with mock

	Upgrade to requests 1.0.x

0.2.0: 2012-11-21

	MAJOR API CHANGES:

	GitHub.iter_subscribed –> GitHub.iter_subscriptions

	Broken list_* functions in github3.api have been renamed to the correct
iter_* methods on GitHub.

	Removed list_* functions from Repository, Gist,
Organization, and User objects

	Added zen of GitHub method.

	More tests

	Changed the way Repository.edit works courtesy of Kristian Glass
(@doismellburning)

	Changed Repository.contents behavior when acting on a 404.

	50% test coverage via mock tests

0.1.0: 2012-11-13

	Add API for GitHub Enterprise customers.

0.1b2: 2012-11-10

	Handle 500 errors better, courtesy of Kristian Glass (@doismellburning)

	Handle sending JSON with % symbols better, courtesy of Kristian Glass

	Correctly handle non-GitHub committers and authors courtesy of Paul Swartz
(@paulswartz)

	Correctly display method signatures in documentation courtesy of (@seveas)

0.1b1: 2012-10-31

	unit tests implemented using mock instead of hitting the GitHub API (#37)

	removed list_* functions from GitHub object

	Notifications API coverage

0.1b0: 2012-10-06

	Support for the complete GitHub API (accomplished)

	Now also includes the Statuses API

	Also covers the auto_init parameters to the Repository creation
methodology

	Limited implementation of iterators in the place of list functions.

	98% coverage by unit tests

Writing Tests for github3.py

Unit Tests

In computer programming, unit testing is a method by which individual
units of source code, sets of one or more computer program modules
together with associated control data, usage procedures, and operating
procedures are tested to determine if they are fit for use. Intuitively,
one can view a unit as the smallest testable part of an application.

—Unit Testing on Wikipedia [http://en.wikipedia.org/wiki/Unit_testing]

In github3.py we use unit tests to make assertions about how the library
behaves without making a request to the internet. For example, one assertion
we might write would check if custom information is sent along in a request to
GitHub.

An existing test like this can be found in
tests/unit/test_repos_release.py:

def test_delete(self):
 self.instance.delete()
 self.session.delete.assert_called_once_with(
 self.example_data['url'],
 headers={'Accept': 'application/vnd.github.manifold-preview'}
)

In this test, we check that the library passes on important headers to the API
to ensure the request will work properly. self.instance is created for us
and is an instance of the Release class. The test then calls delete to
make a request to the API. self.session is a mock object which fakes out a
normal session. It does not allow the request through but allows us to verify
how github3.py makes a request. We can see that github3.py called delete
on the session. We assert that it was only called once and that the only
parameters sent were a URL and the custom headers that we are concerned with.

Mocks

Above we talked about mock objects. What are they?

In object-oriented programming, mock objects are simulated objects that
mimic the behavior of real objects in controlled ways. A programmer
typically creates a mock object to test the behavior of some other object,
in much the same way that a car designer uses a crash test dummy to
simulate the dynamic behavior of a human in vehicle impacts.

—Mock Object on Wikipedia [http://en.wikipedia.org/wiki/Mock_object]

We use mocks in github3.py to prevent the library from talking directly with
GitHub. The mocks we use intercept requests the library makes so we can verify
the parameters we use. In the example above, we were able to check that
certain parameters were the only ones sent to a session method because we
mocked out the session.

You may have noticed in the example above that we did not have to set up the
mock object. There is a convenient helper written in tests/unit/helper.py
to do this for you.

Example - Testing the Release Object

Here’s a full example of how we test the Release object in
tests/unit/test_repos_release.py.

Our first step is to import the UnitHelper class from
tests/unit/helper.py and the Release object from
github3/repos/release.py.

from .helper import UnitHelper
from github3.repos.release import Release

Then we construct our test class and indicate which class we will be testing
(or describing).

class TestRelease(UnitHelper):
 described_class = Release

We can then use the GitHub API documentation about Releases [http://developer.github.com/v3/repos/releases/] to retrieve example release
data. We then can use that as example data for our test like so:

class TestRelease(UnitHelper):
 described_class = Release
 example_data = {
 "url": releases_url("/1"),
 "html_url": "https://github.com/octocat/Hello-World/releases/v1.0.0",
 "assets_url": releases_url("/1/assets"),
 "upload_url": releases_url("/1/assets{?name}"),
 "id": 1,
 "tag_name": "v1.0.0",
 "target_commitish": "master",
 "name": "v1.0.0",
 "body": "Description of the release",
 "draft": False,
 "prerelease": False,
 "created_at": "2013-02-27T19:35:32Z",
 "published_at": "2013-02-27T19:35:32Z"
 }

The above code now will handle making clean and brand new instances of the
Release object with the example data and a faked out session. We can now
construct our first test.

def test_delete(self):
 self.instance.delete()
 self.session.delete.assert_called_once_with(
 self.example_data['url'],
 headers={'Accept': 'application/vnd.github.manifold-preview'}
)

Integration Tests

Integration testing is the phase in software testing in which individual
software modules are combined and tested as a group.

The purpose of integration testing is to verify functional, performance,
and reliability requirements placed on major design items.

—Integration tests on Wikipedia [http://en.wikipedia.org/wiki/Integration_tests]

In github3.py we use integration tests to ensure that when we make what should
be a valid request to GitHub, it is in fact valid. For example, if we were
testing how github3.py requests a user’s information, we would expect a
request for a real user’s data to be valid. If the test fails we know either
what the library is doing is wrong or the data requested does not exist.

An existing test that demonstrates integration testing can be found in
tests/integration/test_repos_release.py:

def test_iter_assets(self):
 """Test the ability to iterate over the assets of a release."""
 cassette_name = self.cassette_name('iter_assets')
 with self.recorder.use_cassette(cassette_name):
 repository = self.gh.repository('sigmavirus24', 'github3.py')
 release = repository.release(76677)
 for asset in release.iter_assets():
 assert isinstance(asset, github3.repos.release.Asset)
 assert asset is not None

In this test we use self.recorder to record our interaction with GitHub.
We then proceed to make the request to GitHub that will exercise the code we
wish to test. First we request a Repository object from GitHub and then
using that we request a Release object. After receiving that release, we
exercise the code that lists the assets of a Release. We verify that each
asset is an instance of the Asset class and that at the end the asset
variable is not None. If asset was None, that would indicate that
GitHub did not return any data and it did not exercise the code we are trying
to test.

Betamax

Betamax [https://github.com/sigmavirus24/betamax] is the library that we use to create the recorder above. It sets up
the session object to intercept every request and corresponding response and
save them to what it calls cassettes [https://betamax.readthedocs.io/en/latest/cassettes.html]. After you record the interaction it
never has to speak to the internet again for that request.

In github3.py there is a helper class (much like UnitHelper) in
tests/integration/helper.py which sets everything up for us.

Example - Testing the Release Object

Here’s an example of how we write an integration test for github3.py. The
example can be found in tests/integration/test_repos_release.py.

Our first steps are the necessary imports.

import github3

from .helper import IntegrationHelper

Then we start writing our test right away.

class TestRelease(IntegrationHelper):
 def test_delete(self):
 """Test the ability to delete a release."""
 self.token_login()
 cassette_name = self.cassette_name('delete')
 with self.recorder.use_cassette(cassette_name):
 repository = self.gh.repository('github3py', 'github3.py')
 release = repository.create_release(
 '0.8.0.pre', 'develop', '0.8.0 fake release',
 'To be deleted'
)
 assert release is not None
 assert release.delete() is True

Every test has access to self.gh which is an instance of GitHub.
IntegrationHelper provides a lot of methods that allow you to focus on
what we are testing instead of setting up for the test. The first of those
methods we see in use is self.token_login which handles authenticating
with a token. It’s sister method is self.basic_login which handles
authentication with basic credentials. Both of these methods will set up the
authentication for you on self.gh.

The next convenience method we see is self.cassette_name. It constructs a
cassette name for you based on the test class name and the string you provide
it.

Every test also has access to self.recorder. This is the Betamax recorder
that has been set up for you to record your interactions. The recorder is
started when you write

with self.recorder.use_cassette(cassette_name):
 # ...

Everything that talks to GitHub should be written inside of the context
created by the context manager there. No requests to GitHub should be made
outside of that context.

In that context, we then retrieve a repository and create a release for it. We
want to be sure that we will be deleting something that exists so we assert
that what we received back from GitHub is not None. Finally we call
delete and assert that it returns True.

When you write your new test and record a new cassette, be sure to add the new
cassette file to the repository, like so:

git add tests/cassettes/Release_delete.json

Recording Cassettes that Require Authentication/Authorization

If you need to write a test that requires an Authorization (i.e., OAuth token)
or Authentication (i.e., username and password), all you need to do is set
environment variables when running py.test, e.g.,

GH_AUTH="abc123" py.test
GH_USER="sigmavirus24" GH_PASSWORD="super-secure-password-plz-kthxbai" py.test

If you are concerned that your credentials will be saved, you need not worry.
Betamax sanitizes information like that before saving the cassette. It never
does hurt to double check though.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 github3	

 	
 	
 github3.api	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	access_tokens_url (github3.apps.Installation attribute)

 	account (github3.apps.Installation attribute)

 	activate_membership() (github3.github.GitHub method)

 	active (github3.orgs.Membership attribute)

 	(github3.repos.hook.Hook attribute)

 	actor (github3.events.Event attribute)

 	(github3.issues.event.IssueEvent attribute)

 	add_assignees() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	add_collaborator() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	add_contexts() (github3.repos.branch.ProtectionRequiredStatusChecks method)

 	add_email_addresses() (github3.github.GitHub method)

 	add_labels() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	add_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	add_or_update_membership() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	add_repository() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	add_scopes() (github3.auths.Authorization method)

 	add_teams() (github3.repos.branch.ProtectionRestrictions method)

 	add_users() (github3.repos.branch.ProtectionRestrictions method)

 	additions (github3.gists.history.GistHistory attribute)

 	additions_count (github3.pulls.PullFile attribute)

 	(github3.pulls.PullRequest attribute)

 	admin_stats() (github3.github.GitHubEnterprise method)

 	all_events() (github3.github.GitHub method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(in module github3)

 	all_organizations() (github3.github.GitHub method)

 	all_repositories() (github3.github.GitHub method)

 	(in module github3)

 	all_users() (github3.github.GitHub method)

 	(in module github3)

 	allow_merge_commit (github3.repos.repo.Repository attribute)

 	allow_rebase_merge (github3.repos.repo.Repository attribute)

 	allow_squash_merge (github3.repos.repo.Repository attribute)

 	alternate_weeks (github3.repos.stats.ContributorStats attribute)

 	api() (github3.github.GitHubStatus method)

 	App (class in github3.apps)

 	app (github3.auths.Authorization attribute)

 	app() (github3.github.GitHub method)

 	app_id (github3.apps.Installation attribute)

 	app_installation() (github3.github.GitHub method)

 	app_installation_for_organization() (github3.github.GitHub method)

 	app_installation_for_repository() (github3.github.GitHub method)

 	app_installation_for_user() (github3.github.GitHub method)

 	app_installations() (github3.github.GitHub method)

 	archive() (github3.repos.release.Release method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	archive_urlt (github3.repos.repo.ShortRepository attribute)

 	archived (github3.repos.repo.Repository attribute)

 	as_dict() (github3.apps.App method)

 	(github3.apps.Installation method)

 	(github3.auths.Authorization method)

 	(github3.events.Event method)

 	(github3.github.GitHub method)

 	(github3.issues.comment.IssueComment method)

 	(github3.issues.event.IssueEvent method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.models.GitHubCore method)

 	(github3.notifications.RepositorySubscription method)

 	(github3.notifications.Thread method)

 	(github3.notifications.ThreadSubscription method)

 	(github3.orgs.Membership method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.PullDestination method)

 	(github3.pulls.PullFile method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ReviewComment method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.repos.repo.StarredRepository method)

 	(github3.structs.GitHubIterator method)

 	(github3.structs.SearchIterator method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.Email method)

 	(github3.users.Key method)

 	(github3.users.Plan method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	
 	as_json() (github3.apps.App method)

 	(github3.apps.Installation method)

 	(github3.auths.Authorization method)

 	(github3.events.Event method)

 	(github3.github.GitHub method)

 	(github3.issues.comment.IssueComment method)

 	(github3.issues.event.IssueEvent method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.models.GitHubCore method)

 	(github3.notifications.RepositorySubscription method)

 	(github3.notifications.Thread method)

 	(github3.notifications.ThreadSubscription method)

 	(github3.orgs.Membership method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.PullDestination method)

 	(github3.pulls.PullFile method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ReviewComment method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.repos.repo.StarredRepository method)

 	(github3.structs.GitHubIterator method)

 	(github3.structs.SearchIterator method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.Email method)

 	(github3.users.Key method)

 	(github3.users.Plan method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	Asset (class in github3.repos.release)

 	asset() (github3.repos.release.Release method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	assets() (github3.repos.release.Release method)

 	assets_url (github3.repos.release.Release attribute)

 	assign() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	assignee (github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	assignees (github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	assignees() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	assignees_urlt (github3.repos.repo.ShortRepository attribute)

 	authenticated_app() (github3.github.GitHub method)

 	AuthenticatedUser (class in github3.users)

 	author (github3.git.ShortCommit attribute)

 	(github3.repos.release.Release attribute)

 	(github3.repos.stats.ContributorStats attribute)

 	author_association (github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.repos.comment.ShortComment attribute)

 	Authorization (class in github3.auths)

 	authorization() (github3.github.GitHub method)

 	authorizations() (github3.github.GitHub method)

 	authorize() (github3.github.GitHub method)

 	(in module github3)

 	avatar_url (github3.events.EventOrganization attribute)

 	(github3.events.EventUser attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.users.ShortUser attribute)

B

 	
 	Base (class in github3.pulls)

 	base (github3.pulls.ShortPullRequest attribute)

 	base_commit (github3.repos.comparison.Comparison attribute)

 	behind_by (github3.repos.comparison.Comparison attribute)

 	bio (github3.users.User attribute)

 	Blob (class in github3.git)

 	blob() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	blob_url (github3.pulls.PullFile attribute)

 	blobs_urlt (github3.repos.repo.ShortRepository attribute)

 	blog (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	body (github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.release.Release attribute)

 	
 	body_html (github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.Issue attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.RepoComment attribute)

 	body_text (github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.Issue attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.RepoComment attribute)

 	Branch (class in github3.repos.branch)

 	branch() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	branches() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	branches_urlt (github3.repos.repo.ShortRepository attribute)

 	BranchProtection (class in github3.repos.branch)

 	browser_download_url (github3.repos.release.Asset attribute)

C

 	
 	change_status (github3.gists.history.GistHistory attribute)

 	changes_count (github3.pulls.PullFile attribute)

 	check_authorization() (github3.github.GitHub method)

 	clone_url (github3.repos.repo.Repository attribute)

 	close() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	closed_at (github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	closed_by (github3.issues.issue.Issue attribute)

 	closed_issues_count (github3.issues.milestone.Milestone attribute)

 	cls (github3.structs.GitHubIterator attribute)

 	cname (github3.repos.pages.PagesInfo attribute)

 	code_frequency() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	CodeSearchResult (class in github3.search)

 	Collaborator (class in github3.users)

 	collaborators() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	collaborators_count (github3.users.Plan attribute)

 	collaborators_urlt (github3.repos.repo.ShortRepository attribute)

 	CombinedStatus (class in github3.repos.status)

 	comment() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	comments() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	comments_count (github3.gists.gist.ShortGist attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.PullRequest attribute)

 	comments_url (github3.gists.gist.ShortGist attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	comments_urlt (github3.repos.repo.ShortRepository attribute)

 	Commit (class in github3.git)

 	commit (github3.repos.branch.ShortBranch attribute)

 	(github3.repos.pages.PagesBuild attribute)

 	(github3.repos.tag.RepoTag attribute)

 	commit() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	commit_activity() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	commit_comment() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	commit_id (github3.events.EventReviewComment attribute)

 	(github3.issues.event.IssueEvent attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.repos.comment.ShortComment attribute)

 	commit_url (github3.issues.event.IssueEvent attribute)

 	(github3.repos.status.CombinedStatus attribute)

 	commits (github3.repos.comparison.Comparison attribute)

 	commits() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	commits_count (github3.pulls.PullRequest attribute)

 	commits_url (github3.gists.gist.Gist attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	commits_urlt (github3.repos.repo.ShortRepository attribute)

 	committed_at (github3.gists.history.GistHistory attribute)

 	committer (github3.git.ShortCommit attribute)

 	CommitTree (class in github3.git)

 	company (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	compare_commits() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	compare_urlt (github3.repos.repo.ShortRepository attribute)

 	Comparison (class in github3.repos.comparison)

 	conceal_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	config (github3.repos.hook.Hook attribute)

 	content (github3.git.Blob attribute)

 	(github3.repos.contents.Contents attribute)

 	content_type (github3.repos.release.Asset attribute)

 	Contents (class in github3.repos.contents)

 	contents() (github3.pulls.PullFile method)

 	contents_url (github3.pulls.PullFile attribute)

 	contents_urlt (github3.repos.repo.ShortRepository attribute)

 	context (github3.repos.status.ShortStatus attribute)

 	contexts() (github3.repos.branch.ProtectionRequiredStatusChecks method)

 	contributions_count (github3.users.Contributor attribute)

 	Contributor (class in github3.users)

 	contributor_statistics() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	contributors() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	contributors_url (github3.repos.repo.ShortRepository attribute)

 	ContributorStats (class in github3.repos.stats)

 	count (github3.structs.GitHubIterator attribute)

 	create_blob() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_branch_ref() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_comment() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	create_commit() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_deployment() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_file() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_fork() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_gist() (github3.github.GitHub method)

 	(in module github3)

 	create_gpg_key() (github3.github.GitHub method)

 	create_hook() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_issue() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_key() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_label() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_milestone() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_project() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_pull() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_pull_from_issue() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_ref() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_release() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_repository() (github3.github.GitHub method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	create_review() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	create_review_comment() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	create_review_requests() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	create_status() (github3.repos.deployment.Deployment method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_tag() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_team() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	create_tree() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	create_user() (github3.github.GitHubEnterprise method)

 	created_at (github3.apps.App attribute)

 	(github3.apps.Installation attribute)

 	(github3.auths.Authorization attribute)

 	(github3.events.Event attribute)

 	(github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.gists.gist.GistFork attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.event.IssueEvent attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.notifications.RepositorySubscription attribute)

 	(github3.notifications.ThreadSubscription attribute)

 	(github3.orgs.Organization attribute)

 	(github3.orgs.Team attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.hook.Hook attribute)

 	(github3.repos.issue_import.ImportedIssue attribute)

 	(github3.repos.pages.PagesBuild attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.release.Release attribute)

 	(github3.repos.repo.Repository attribute)

 	(github3.repos.status.ShortStatus attribute)

 	(github3.users.User attribute)

 	creator (github3.issues.milestone.Milestone attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.status.ShortStatus attribute)

 	(github3.repos.status.Status attribute)

 	custom_404 (github3.repos.pages.PagesInfo attribute)

D

 	
 	decoded (github3.repos.contents.Contents attribute)

 	default_branch (github3.repos.repo.Repository attribute)

 	delete() (github3.auths.Authorization method)

 	(github3.issues.comment.IssueComment method)

 	(github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.notifications.RepositorySubscription method)

 	(github3.notifications.ThreadSubscription method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.ReviewComment method)

 	(github3.repos.branch.BranchProtection method)

 	(github3.repos.branch.ProtectionRequiredPullRequestReviews method)

 	(github3.repos.branch.ProtectionRequiredStatusChecks method)

 	(github3.repos.branch.ProtectionRestrictions method)

 	(github3.repos.contents.Contents method)

 	(github3.repos.hook.Hook method)

 	(github3.repos.release.Asset method)

 	(github3.repos.release.Release method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.Key method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	delete_contexts() (github3.repos.branch.ProtectionRequiredStatusChecks method)

 	delete_email_addresses() (github3.github.GitHub method)

 	delete_key() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	delete_review_requests() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	delete_subscription() (github3.notifications.Thread method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	deletions (github3.gists.history.GistHistory attribute)

 	deletions_count (github3.pulls.PullFile attribute)

 	(github3.pulls.PullRequest attribute)

 	demote() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	
 	Deployment (class in github3.repos.deployment)

 	deployment() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	deployment_url (github3.repos.deployment.DeploymentStatus attribute)

 	deployments() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	deployments_url (github3.repos.repo.ShortRepository attribute)

 	DeploymentStatus (class in github3.repos.deployment)

 	desciption (github3.issues.label.Label attribute)

 	description (github3.apps.App attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.repos.status.ShortStatus attribute)

 	diff() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.comparison.Comparison method)

 	diff_hunk (github3.events.EventReviewComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	diff_url (github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comparison.Comparison attribute)

 	directory_contents() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	disable() (github3.repos.branch.ProtectionEnforceAdmins method)

 	disk_usage (github3.users.AuthenticatedUser attribute)

 	dismiss_stale_reviews (github3.repos.branch.ProtectionRequiredPullRequestReviews attribute)

 	dismissal_restrictions (github3.repos.branch.ProtectionRequiredPullRequestReviews attribute)

 	display_login (github3.events.EventUser attribute)

 	download() (github3.repos.release.Asset method)

 	download_count (github3.repos.release.Asset attribute)

 	download_url (github3.repos.release.Asset attribute)

 	downloads_url (github3.repos.repo.ShortRepository attribute)

 	draft (github3.repos.release.Release attribute)

 	due_on (github3.issues.milestone.Milestone attribute)

 	duration (github3.repos.pages.PagesBuild attribute)

E

 	
 	edit() (github3.issues.comment.IssueComment method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.orgs.Membership method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.ReviewComment method)

 	(github3.repos.hook.Hook method)

 	(github3.repos.release.Asset method)

 	(github3.repos.release.Release method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	Email (class in github3.users)

 	email (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	emails() (github3.github.GitHub method)

 	emojis() (github3.github.GitHub method)

 	enable() (github3.repos.branch.ProtectionEnforceAdmins method)

 	enabled (github3.repos.branch.ProtectionEnforceAdmins attribute)

 	encoding (github3.git.Blob attribute)

 	(github3.repos.contents.Contents attribute)

 	enforce_admins (github3.repos.branch.BranchProtection attribute)

 	environment (github3.repos.deployment.Deployment attribute)

 	error (github3.repos.pages.PagesBuild attribute)

 	
 	etag (github3.structs.GitHubIterator attribute)

 	Event (class in github3.events)

 	event (github3.issues.event.IssueEvent attribute)

 	EventIssue (class in github3.events)

 	EventIssueComment (class in github3.events)

 	EventOrganization (class in github3.events)

 	EventPullRequest (class in github3.events)

 	EventReviewComment (class in github3.events)

 	events (github3.apps.Installation attribute)

 	(github3.repos.hook.Hook attribute)

 	events() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	events_url (github3.issues.issue.ShortIssue attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	events_urlt (github3.users.ShortUser attribute)

 	EventUser (class in github3.events)

 	external_url (github3.apps.App attribute)

F

 	
 	feeds() (github3.github.GitHub method)

 	file_contents() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	filename (github3.gists.file.ShortGistFile attribute)

 	(github3.pulls.PullFile attribute)

 	files (github3.gists.gist.ShortGist attribute)

 	(github3.repos.comparison.Comparison attribute)

 	files() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	fingerprint (github3.auths.Authorization attribute)

 	follow() (github3.github.GitHub method)

 	followed_by() (github3.github.GitHub method)

 	(in module github3)

 	followers() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	followers_count (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	followers_of() (github3.github.GitHub method)

 	(in module github3)

 	followers_url (github3.users.ShortUser attribute)

 	following() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	following_count (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	following_urlt (github3.users.ShortUser attribute)

 	fork (github3.repos.repo.ShortRepository attribute)

 	forks() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	forks_count (github3.repos.repo.Repository attribute)

 	forks_url (github3.gists.gist.Gist attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	from_dict() (github3.apps.App class method)

 	(github3.apps.Installation class method)

 	(github3.auths.Authorization class method)

 	(github3.events.Event class method)

 	(github3.github.GitHub class method)

 	(github3.issues.comment.IssueComment class method)

 	(github3.issues.event.IssueEvent class method)

 	(github3.issues.issue.Issue class method)

 	(github3.issues.issue.ShortIssue class method)

 	(github3.issues.label.Label class method)

 	(github3.issues.milestone.Milestone class method)

 	(github3.models.GitHubCore class method)

 	(github3.notifications.RepositorySubscription class method)

 	(github3.notifications.Thread class method)

 	(github3.notifications.ThreadSubscription class method)

 	(github3.orgs.Membership class method)

 	(github3.orgs.Organization class method)

 	(github3.orgs.ShortOrganization class method)

 	(github3.orgs.ShortTeam class method)

 	(github3.orgs.Team class method)

 	(github3.pulls.PullDestination class method)

 	(github3.pulls.PullFile class method)

 	(github3.pulls.PullRequest class method)

 	(github3.pulls.ReviewComment class method)

 	(github3.pulls.ShortPullRequest class method)

 	(github3.repos.repo.Repository class method)

 	(github3.repos.repo.ShortRepository class method)

 	(github3.repos.repo.StarredRepository class method)

 	(github3.structs.GitHubIterator class method)

 	(github3.structs.SearchIterator class method)

 	(github3.users.AuthenticatedUser class method)

 	(github3.users.Collaborator class method)

 	(github3.users.Contributor class method)

 	(github3.users.Email class method)

 	(github3.users.Key class method)

 	(github3.users.Plan class method)

 	(github3.users.ShortUser class method)

 	(github3.users.User class method)

 	
 	from_json() (github3.apps.App class method)

 	(github3.apps.Installation class method)

 	(github3.auths.Authorization class method)

 	(github3.events.Event class method)

 	(github3.github.GitHub class method)

 	(github3.issues.comment.IssueComment class method)

 	(github3.issues.event.IssueEvent class method)

 	(github3.issues.issue.Issue class method)

 	(github3.issues.issue.ShortIssue class method)

 	(github3.issues.label.Label class method)

 	(github3.issues.milestone.Milestone class method)

 	(github3.models.GitHubCore class method)

 	(github3.notifications.RepositorySubscription class method)

 	(github3.notifications.Thread class method)

 	(github3.notifications.ThreadSubscription class method)

 	(github3.orgs.Membership class method)

 	(github3.orgs.Organization class method)

 	(github3.orgs.ShortOrganization class method)

 	(github3.orgs.ShortTeam class method)

 	(github3.orgs.Team class method)

 	(github3.pulls.PullDestination class method)

 	(github3.pulls.PullFile class method)

 	(github3.pulls.PullRequest class method)

 	(github3.pulls.ReviewComment class method)

 	(github3.pulls.ShortPullRequest class method)

 	(github3.repos.repo.Repository class method)

 	(github3.repos.repo.ShortRepository class method)

 	(github3.repos.repo.StarredRepository class method)

 	(github3.structs.GitHubIterator class method)

 	(github3.structs.SearchIterator class method)

 	(github3.users.AuthenticatedUser class method)

 	(github3.users.Collaborator class method)

 	(github3.users.Contributor class method)

 	(github3.users.Email class method)

 	(github3.users.Key class method)

 	(github3.users.Plan class method)

 	(github3.users.ShortUser class method)

 	(github3.users.User class method)

 	full_name (github3.repos.repo.ShortRepository attribute)

G

 	
 	Gist (class in github3.gists.gist)

 	gist() (github3.github.GitHub method)

 	(in module github3)

 	GistFile (class in github3.gists.file)

 	GistFork (class in github3.gists.gist)

 	GistHistory (class in github3.gists.history)

 	gists() (github3.github.GitHub method)

 	gists_by() (github3.github.GitHub method)

 	(in module github3)

 	gists_urlt (github3.users.ShortUser attribute)

 	git_commit() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	git_commits_urlt (github3.repos.repo.ShortRepository attribute)

 	git_pull_url (github3.gists.gist.ShortGist attribute)

 	git_push_url (github3.gists.gist.ShortGist attribute)

 	git_refs_urlt (github3.repos.repo.ShortRepository attribute)

 	git_tags_urlt (github3.repos.repo.ShortRepository attribute)

 	git_url (github3.repos.contents.Contents attribute)

 	(github3.repos.repo.Repository attribute)

 	(github3.search.CodeSearchResult attribute)

 	GitHub (class in github3.github)

 	
 	github3 (module)

 	github3.api (module)

 	GitHubCore (class in github3.models)

 	GitHubEnterprise (class in github3.github)

 	GitHubIterator (class in github3.structs)

 	GitHubSession (class in github3.session)

 	GitHubStatus (class in github3.github)

 	gitignore_template() (github3.github.GitHub method)

 	(in module github3)

 	gitignore_templates() (github3.github.GitHub method)

 	(in module github3)

 	GitObject (class in github3.git)

 	gpg_key() (github3.github.GitHub method)

 	gpg_keys() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	gravatar_id (github3.events.EventOrganization attribute)

 	(github3.events.EventUser attribute)

 	(github3.users.ShortUser attribute)

H

 	
 	has_downloads (github3.repos.repo.Repository attribute)

 	has_issues (github3.repos.repo.Repository attribute)

 	has_pages (github3.repos.repo.Repository attribute)

 	has_repository() (github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	has_wiki (github3.repos.repo.Repository attribute)

 	Hash (class in github3.git)

 	hashed_token (github3.auths.Authorization attribute)

 	Head (class in github3.pulls)

 	head (github3.pulls.ShortPullRequest attribute)

 	headers (github3.structs.GitHubIterator attribute)

 	hireable (github3.users.User attribute)

 	history (github3.gists.gist.Gist attribute)

 	homepage (github3.repos.repo.Repository attribute)

 	Hook (class in github3.repos.hook)

 	hook() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	hooks() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	hooks_url (github3.orgs.ShortOrganization attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	html_url (github3.apps.App attribute)

 	(github3.apps.Installation attribute)

 	(github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.orgs.Organization attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.comparison.Comparison attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.repos.release.Release attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.search.CodeSearchResult attribute)

 	(github3.users.ShortUser attribute)

I

 	
 	id (github3.apps.App attribute)

 	(github3.apps.Installation attribute)

 	(github3.auths.Authorization attribute)

 	(github3.events.Event attribute)

 	(github3.events.EventIssueComment attribute)

 	(github3.events.EventOrganization attribute)

 	(github3.events.EventPullRequest attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.events.EventUser attribute)

 	(github3.gists.gist.GistFork attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.event.IssueEvent attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.notifications.Thread attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.orgs.ShortTeam attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.hook.Hook attribute)

 	(github3.repos.issue_import.ImportedIssue attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.release.Release attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.repos.status.ShortStatus attribute)

 	(github3.users.Key attribute)

 	(github3.users.ShortUser attribute)

 	ignore() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	ignored (github3.notifications.RepositorySubscription attribute)

 	(github3.notifications.ThreadSubscription attribute)

 	impersonate() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	import_issue() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	import_issues_url (github3.repos.issue_import.ImportedIssue attribute)

 	imported_issue() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	imported_issues() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	ImportedIssue (class in github3.repos.issue_import)

 	Installation (class in github3.apps)

 	invitations() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	invite() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	
 	is_assignee() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	is_assignee_on() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	is_closed() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	is_collaborator() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	is_following() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	is_free() (github3.users.Plan method)

 	is_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	is_merged() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	is_public_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	is_starred() (github3.github.GitHub method)

 	Issue (class in github3.issues.issue)

 	issue (github3.issues.event.RepositoryIssueEvent attribute)

 	(github3.search.IssueSearchResult attribute)

 	issue() (github3.github.GitHub method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(in module github3)

 	issue_comment_urlt (github3.repos.repo.ShortRepository attribute)

 	issue_comments() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	issue_events() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	issue_events_urlt (github3.repos.repo.ShortRepository attribute)

 	issue_url (github3.events.EventIssueComment attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	IssueComment (class in github3.issues.comment)

 	IssueEvent (class in github3.issues.event)

 	issues() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	issues_on() (github3.github.GitHub method)

 	(in module github3)

 	issues_url (github3.orgs.ShortOrganization attribute)

 	issues_urlt (github3.repos.repo.ShortRepository attribute)

 	IssueSearchResult (class in github3.search)

 	items (github3.structs.SearchIterator attribute)

K

 	
 	Key (class in github3.users)

 	key (github3.users.Key attribute)

 	key() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	keys() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	
 	keys_urlt (github3.repos.repo.ShortRepository attribute)

L

 	
 	Label (class in github3.issues.label)

 	label (github3.pulls.PullDestination attribute)

 	(github3.repos.release.Asset attribute)

 	label() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	labels() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.issues.milestone.Milestone method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	labels_urlt (github3.issues.issue.ShortIssue attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	language (github3.gists.file.ShortGistFile attribute)

 	(github3.repos.repo.Repository attribute)

 	languages() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	languages_url (github3.repos.repo.ShortRepository attribute)

 	last_message() (github3.github.GitHubStatus method)

 	last_read_at (github3.notifications.Thread attribute)

 	last_response (github3.structs.GitHubIterator attribute)

 	last_status (github3.structs.GitHubIterator attribute)

 	last_url (github3.structs.GitHubIterator attribute)

 	latest_pages_build() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	latest_release() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	license() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	licenses() (github3.github.GitHub method)

 	line (github3.repos.comment.ShortComment attribute)

 	links (github3.events.EventReviewComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.branch.Branch attribute)

 	(github3.repos.contents.Contents attribute)

 	list_types() (github3.events.Event static method)

 	location (github3.orgs.Organization attribute)

 	(github3.users.User attribute)

 	lock() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	locked (github3.events.EventPullRequest attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	login (github3.events.EventOrganization attribute)

 	(github3.events.EventUser attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.users.ShortUser attribute)

 	login() (github3.github.GitHub method)

 	(in module github3)

 	login_as_app() (github3.github.GitHub method)

 	login_as_app_installation() (github3.github.GitHub method)

M

 	
 	mark() (github3.notifications.Thread method)

 	mark_notifications() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	markdown() (github3.github.GitHub method)

 	(in module github3)

 	me() (github3.github.GitHub method)

 	members() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	members_count (github3.orgs.ShortTeam attribute)

 	(github3.orgs.Team attribute)

 	members_url (github3.orgs.ShortOrganization attribute)

 	members_urlt (github3.orgs.ShortTeam attribute)

 	Membership (class in github3.orgs)

 	membership_for() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	membership_in() (github3.github.GitHub method)

 	merge() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	merge_commit_sha (github3.pulls.ShortPullRequest attribute)

 	mergeable (github3.pulls.PullRequest attribute)

 	mergeable_state (github3.pulls.PullRequest attribute)

 	merged (github3.pulls.PullRequest attribute)

 	merged_at (github3.pulls.ShortPullRequest attribute)

 	merged_by (github3.pulls.PullRequest attribute)

 	merges_url (github3.repos.repo.ShortRepository attribute)

 	message (github3.git.ShortCommit attribute)

 	(github3.git.Tag attribute)

 	messages() (github3.github.GitHubStatus method)

 	meta() (github3.github.GitHub method)

 	Milestone (class in github3.issues.milestone)

 	milestone (github3.issues.issue.ShortIssue attribute)

 	milestone() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	milestones() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	milestones_urlt (github3.repos.repo.ShortRepository attribute)

 	MiniCommit (class in github3.repos.commit)

 	mirror_url (github3.repos.repo.Repository attribute)

 	mode (github3.git.Hash attribute)

N

 	
 	name (github3.apps.App attribute)

 	(github3.issues.label.Label attribute)

 	(github3.orgs.Organization attribute)

 	(github3.orgs.ShortTeam attribute)

 	(github3.repos.branch.ShortBranch attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.repos.hook.Hook attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.release.Release attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.repos.tag.RepoTag attribute)

 	(github3.search.CodeSearchResult attribute)

 	(github3.users.Plan attribute)

 	(github3.users.User attribute)

 	network_count (github3.repos.repo.Repository attribute)

 	network_events() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	new_session() (github3.apps.App method)

 	(github3.apps.Installation method)

 	(github3.auths.Authorization method)

 	(github3.events.Event method)

 	(github3.github.GitHub method)

 	(github3.issues.comment.IssueComment method)

 	(github3.issues.event.IssueEvent method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.models.GitHubCore method)

 	(github3.notifications.RepositorySubscription method)

 	(github3.notifications.Thread method)

 	(github3.notifications.ThreadSubscription method)

 	(github3.orgs.Membership method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.PullDestination method)

 	(github3.pulls.PullFile method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ReviewComment method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.repos.repo.StarredRepository method)

 	(github3.structs.GitHubIterator method)

 	(github3.structs.SearchIterator method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.Email method)

 	(github3.users.Key method)

 	(github3.users.Plan method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	
 	next() (github3.structs.GitHubIterator method)

 	(github3.structs.SearchIterator method)

 	node_id (github3.apps.App attribute)

 	note (github3.auths.Authorization attribute)

 	note_url (github3.auths.Authorization attribute)

 	notifications() (github3.github.GitHub method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	notifications_urlt (github3.repos.repo.ShortRepository attribute)

 	number (github3.events.EventPullRequest attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.pulls.ShortPullRequest attribute)

O

 	
 	object (github3.git.Reference attribute)

 	(github3.git.Tag attribute)

 	octocat() (github3.github.GitHub method)

 	(in module github3)

 	open_issues_count (github3.issues.milestone.Milestone attribute)

 	(github3.repos.repo.Repository attribute)

 	org (github3.events.Event attribute)

 	Organization (class in github3.orgs)

 	organization (github3.orgs.Membership attribute)

 	(github3.orgs.Team attribute)

 	organization() (github3.github.GitHub method)

 	(in module github3)

 	organization_events() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	organization_issues() (github3.github.GitHub method)

 	organization_memberships() (github3.github.GitHub method)

 	organization_url (github3.orgs.Membership attribute)

 	organizations() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	
 	organizations_url (github3.users.ShortUser attribute)

 	organizations_with() (github3.github.GitHub method)

 	(in module github3)

 	original (github3.structs.GitHubIterator attribute)

 	original_assets (github3.repos.release.Release attribute)

 	original_commit_id (github3.events.EventReviewComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	original_content (github3.gists.file.GistFile attribute)

 	original_forks (github3.gists.gist.Gist attribute)

 	original_labels (github3.issues.issue.ShortIssue attribute)

 	original_license (github3.repos.repo.Repository attribute)

 	original_position (github3.events.EventReviewComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	original_protection (github3.repos.branch.Branch attribute)

 	original_teams (github3.repos.branch.ProtectionRestrictions attribute)

 	original_users (github3.repos.branch.ProtectionRestrictions attribute)

 	owned_private_repos_count (github3.users.AuthenticatedUser attribute)

 	owner (github3.apps.App attribute)

 	(github3.gists.gist.GistFork attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.repos.repo.ShortRepository attribute)

P

 	
 	pages() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	pages_builds() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	PagesBuild (class in github3.repos.pages)

 	PagesInfo (class in github3.repos.pages)

 	params (github3.structs.GitHubIterator attribute)

 	parent (github3.repos.repo.Repository attribute)

 	parents (github3.git.Commit attribute)

 	patch (github3.pulls.PullFile attribute)

 	patch() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.comparison.Comparison method)

 	patch_url (github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comparison.Comparison attribute)

 	path (github3.events.EventReviewComment attribute)

 	(github3.git.Hash attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.search.CodeSearchResult attribute)

 	payload (github3.events.Event attribute)

 	(github3.repos.deployment.Deployment attribute)

 	pending (github3.orgs.Membership attribute)

 	permalink_url (github3.repos.comparison.Comparison attribute)

 	permission (github3.orgs.ShortTeam attribute)

 	permissions (github3.apps.Installation attribute)

 	(github3.users.Collaborator attribute)

 	ping() (github3.repos.hook.Hook method)

 	Plan (class in github3.users)

 	plan (github3.users.AuthenticatedUser attribute)

 	position (github3.events.EventReviewComment attribute)

 	(github3.repos.comment.ShortComment attribute)

 	prerelease (github3.repos.release.Release attribute)

 	primary (github3.users.Email attribute)

 	private (github3.repos.repo.ShortRepository attribute)

 	private_repos_count (github3.users.Plan attribute)

 	project() (github3.github.GitHub method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	project_card() (github3.github.GitHub method)

 	project_column() (github3.github.GitHub method)

 	projects() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	promote() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	protected (github3.repos.branch.Branch attribute)

 	protection_url (github3.repos.branch.Branch attribute)

 	ProtectionEnforceAdmins (class in github3.repos.branch)

 	ProtectionRequiredPullRequestReviews (class in github3.repos.branch)

 	ProtectionRequiredStatusChecks (class in github3.repos.branch)

 	ProtectionRestrictions (class in github3.repos.branch)

 	public (github3.events.Event attribute)

 	(github3.gists.gist.ShortGist attribute)

 	public_events() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	public_gists() (github3.github.GitHub method)

 	(in module github3)

 	public_gists_count (github3.users.User attribute)

 	public_members() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	public_members_urlt (github3.orgs.ShortOrganization attribute)

 	public_repos_count (github3.orgs.Organization attribute)

 	publicize_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	published_at (github3.repos.release.Release attribute)

 	pubsubhubbub() (github3.github.GitHub method)

 	pull_request() (github3.github.GitHub method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(in module github3)

 	pull_request_url (github3.events.EventReviewComment attribute)

 	(github3.pulls.ReviewComment attribute)

 	pull_request_urls (github3.issues.issue.ShortIssue attribute)

 	pull_requests() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	PullDestination (class in github3.pulls)

 	PullFile (class in github3.pulls)

 	PullRequest (class in github3.pulls)

 	pulls_urlt (github3.repos.repo.ShortRepository attribute)

 	pushed_at (github3.repos.repo.Repository attribute)

 	pusher (github3.repos.pages.PagesBuild attribute)

R

 	
 	rate_limit() (github3.github.GitHub method)

 	(in module github3)

 	ratelimit_remaining (github3.apps.App attribute)

 	(github3.apps.Installation attribute)

 	(github3.auths.Authorization attribute)

 	(github3.events.Event attribute)

 	(github3.github.GitHub attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.event.IssueEvent attribute)

 	(github3.issues.issue.Issue attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.label.Label attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.models.GitHubCore attribute)

 	(github3.notifications.RepositorySubscription attribute)

 	(github3.notifications.Thread attribute)

 	(github3.notifications.ThreadSubscription attribute)

 	(github3.orgs.Membership attribute)

 	(github3.orgs.Organization attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.orgs.ShortTeam attribute)

 	(github3.orgs.Team attribute)

 	(github3.pulls.PullDestination attribute)

 	(github3.pulls.PullFile attribute)

 	(github3.pulls.PullRequest attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.repo.Repository attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.repos.repo.StarredRepository attribute)

 	(github3.structs.GitHubIterator attribute)

 	(github3.structs.SearchIterator attribute)

 	(github3.users.AuthenticatedUser attribute)

 	(github3.users.Collaborator attribute)

 	(github3.users.Contributor attribute)

 	(github3.users.Email attribute)

 	(github3.users.Key attribute)

 	(github3.users.Plan attribute)

 	(github3.users.ShortUser attribute)

 	(github3.users.User attribute)

 	raw_url (github3.gists.file.ShortGistFile attribute)

 	(github3.pulls.PullFile attribute)

 	readme() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	reason (github3.notifications.RepositorySubscription attribute)

 	(github3.notifications.Thread attribute)

 	(github3.notifications.ThreadSubscription attribute)

 	received_events() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	received_events_url (github3.users.ShortUser attribute)

 	ref (github3.git.Reference attribute)

 	(github3.pulls.PullDestination attribute)

 	(github3.repos.deployment.Deployment attribute)

 	ref() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	Reference (class in github3.git)

 	refresh() (github3.apps.App method)

 	(github3.apps.Installation method)

 	(github3.auths.Authorization method)

 	(github3.events.Event method)

 	(github3.github.GitHub method)

 	(github3.issues.comment.IssueComment method)

 	(github3.issues.event.IssueEvent method)

 	(github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.models.GitHubCore method)

 	(github3.notifications.RepositorySubscription method)

 	(github3.notifications.Thread method)

 	(github3.notifications.ThreadSubscription method)

 	(github3.orgs.Membership method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	(github3.pulls.PullDestination method)

 	(github3.pulls.PullFile method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ReviewComment method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	(github3.repos.repo.StarredRepository method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.Email method)

 	(github3.users.Key method)

 	(github3.users.Plan method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	refs() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	Release (class in github3.repos.release)

 	release() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	release_from_tag() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	releases() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	releases_urlt (github3.repos.repo.ShortRepository attribute)

 	remove_all_labels() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	remove_assignees() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	remove_collaborator() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	remove_contexts() (github3.repos.branch.ProtectionRequiredStatusChecks method)

 	remove_label() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	remove_member() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	remove_membership() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	remove_repository() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	remove_scopes() (github3.auths.Authorization method)

 	remove_teams() (github3.repos.branch.ProtectionRestrictions method)

 	remove_users() (github3.repos.branch.ProtectionRestrictions method)

 	rename() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	reopen() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	replace_contexts() (github3.repos.branch.ProtectionRequiredStatusChecks method)

 	replace_labels() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	replace_scopes() (github3.auths.Authorization method)

 	replace_teams() (github3.repos.branch.ProtectionRestrictions method)

 	replace_topics() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	replace_users() (github3.repos.branch.ProtectionRestrictions method)

 	reply() (github3.pulls.ReviewComment method)

 	repo (github3.events.Event attribute)

 	(github3.pulls.PullDestination attribute)

 	RepoComment (class in github3.repos.comment)

 	RepoCommit (class in github3.repos.commit)

 	repos_count (github3.orgs.ShortTeam attribute)

 	(github3.orgs.Team attribute)

 	repos_url (github3.orgs.ShortOrganization attribute)

 	(github3.users.ShortUser attribute)

 	repositories() (github3.github.GitHub method)

 	(github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

 	repositories_by() (github3.github.GitHub method)

 	(in module github3)

 	repositories_url (github3.apps.Installation attribute)

 	(github3.orgs.ShortTeam attribute)

 	Repository (class in github3.repos.repo)

 	repository (github3.notifications.Thread attribute)

 	(github3.pulls.PullDestination attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.repo.StarredRepository attribute)

 	(github3.repos.status.CombinedStatus attribute)

 	(github3.search.CodeSearchResult attribute)

 	repository() (github3.github.GitHub method)

 	(in module github3)

 	repository_invitations() (github3.github.GitHub method)

 	repository_selection (github3.apps.Installation attribute)

 	repository_url (github3.notifications.RepositorySubscription attribute)

 	(github3.repos.issue_import.ImportedIssue attribute)

 	repository_with_id() (github3.github.GitHub method)

 	RepositoryIssueEvent (class in github3.issues.event)

 	RepositorySearchResult (class in github3.search)

 	RepositorySubscription (class in github3.notifications)

 	RepoTag (class in github3.repos.tag)

 	requested_reviewers (github3.pulls.ShortPullRequest attribute)

 	requested_teams (github3.pulls.ShortPullRequest attribute)

 	require_code_owner_reviews (github3.repos.branch.ProtectionRequiredPullRequestReviews attribute)

 	required_approving_review_count (github3.repos.branch.ProtectionRequiredPullRequestReviews attribute)

 	required_pull_request_reviews (github3.repos.branch.BranchProtection attribute)

 	required_status_checks (github3.repos.branch.BranchProtection attribute)

 	requires_app_credentials() (in module github3.decorators)

 	requires_auth() (in module github3.decorators)

 	requires_basic_auth() (in module github3.decorators)

 	restrictions (github3.repos.branch.BranchProtection attribute)

 	review_comment_urlt (github3.pulls.ShortPullRequest attribute)

 	review_comments() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	review_comments_count (github3.pulls.PullRequest attribute)

 	review_comments_url (github3.pulls.ShortPullRequest attribute)

 	review_requests() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	ReviewComment (class in github3.pulls)

 	reviews() (github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	revoke_authorization() (github3.github.GitHub method)

 	revoke_authorizations() (github3.github.GitHub method)

 	revoke_impersonation() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	revoke_membership() (github3.orgs.ShortTeam method)

 	(github3.orgs.Team method)

S

 	
 	scopes (github3.auths.Authorization attribute)

 	score (github3.search.CodeSearchResult attribute)

 	(github3.search.IssueSearchResult attribute)

 	(github3.search.RepositorySearchResult attribute)

 	(github3.search.UserSearchResult attribute)

 	search_code() (github3.github.GitHub method)

 	(in module github3)

 	search_commits() (github3.github.GitHub method)

 	search_issues() (github3.github.GitHub method)

 	(in module github3)

 	search_repositories() (github3.github.GitHub method)

 	(in module github3)

 	search_users() (github3.github.GitHub method)

 	(in module github3)

 	SearchIterator (class in github3.structs)

 	set() (github3.notifications.RepositorySubscription method)

 	(github3.notifications.ThreadSubscription method)

 	set_client_id() (github3.github.GitHub method)

 	set_subscription() (github3.notifications.Thread method)

 	set_user_agent() (github3.github.GitHub method)

 	sha (github3.git.Blob attribute)

 	(github3.git.Commit attribute)

 	(github3.git.CommitTree attribute)

 	(github3.git.GitObject attribute)

 	(github3.git.Hash attribute)

 	(github3.git.Tag attribute)

 	(github3.git.Tree attribute)

 	(github3.pulls.PullDestination attribute)

 	(github3.pulls.PullFile attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.status.CombinedStatus attribute)

 	(github3.search.CodeSearchResult attribute)

 	ShortBranch (class in github3.repos.branch)

 	ShortComment (class in github3.repos.comment)

 	ShortCommit (class in github3.git)

 	(class in github3.repos.commit)

 	ShortGist (class in github3.gists.gist)

 	ShortGistFile (class in github3.gists.file)

 	ShortIssue (class in github3.issues.issue)

 	ShortOrganization (class in github3.orgs)

 	ShortPullRequest (class in github3.pulls)

 	ShortRepository (class in github3.repos.repo)

 	ShortStatus (class in github3.repos.status)

 	ShortTeam (class in github3.orgs)

 	ShortUser (class in github3.users)

 	single_file_name (github3.apps.Installation attribute)

 	site_admin (github3.users.ShortUser attribute)

 	size (github3.gists.file.ShortGistFile attribute)

 	(github3.git.Blob attribute)

 	(github3.git.Hash attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.repo.Repository attribute)

 	slug (github3.orgs.ShortTeam attribute)

 	source (github3.repos.repo.Repository attribute)

 	space (github3.users.Plan attribute)

 	ssh_url (github3.repos.repo.Repository attribute)

 	star() (github3.github.GitHub method)

 	stargazers() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	stargazers_count (github3.repos.repo.Repository attribute)

 	
 	stargazers_url (github3.repos.repo.ShortRepository attribute)

 	starred() (github3.github.GitHub method)

 	starred_at (github3.repos.repo.StarredRepository attribute)

 	starred_by() (github3.github.GitHub method)

 	(in module github3)

 	starred_repositories() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	starred_urlt (github3.users.ShortUser attribute)

 	StarredRepository (class in github3.repos.repo)

 	state (github3.events.EventPullRequest attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.orgs.Membership attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.status.CombinedStatus attribute)

 	(github3.repos.status.ShortStatus attribute)

 	Status (class in github3.repos.status)

 	status (github3.pulls.PullFile attribute)

 	(github3.repos.comparison.Comparison attribute)

 	(github3.repos.issue_import.ImportedIssue attribute)

 	(github3.repos.pages.PagesBuild attribute)

 	(github3.repos.pages.PagesInfo attribute)

 	status() (github3.github.GitHubStatus method)

 	statuses (github3.repos.status.CombinedStatus attribute)

 	statuses() (github3.repos.deployment.Deployment method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	statuses_url (github3.repos.deployment.Deployment attribute)

 	statuses_urlt (github3.repos.repo.ShortRepository attribute)

 	subject (github3.notifications.Thread attribute)

 	submodule_git_url (github3.repos.contents.Contents attribute)

 	subscribe() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	subscribed (github3.notifications.RepositorySubscription attribute)

 	(github3.notifications.ThreadSubscription attribute)

 	subscribers() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	subscribers_count (github3.repos.repo.Repository attribute)

 	subscribers_url (github3.repos.repo.ShortRepository attribute)

 	subscription() (github3.notifications.Thread method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	subscription_url (github3.repos.repo.ShortRepository attribute)

 	subscriptions() (github3.github.GitHub method)

 	(github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	subscriptions_for() (github3.github.GitHub method)

 	(in module github3)

 	subscriptions_url (github3.users.ShortUser attribute)

 	suspend() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	svn_url (github3.repos.repo.Repository attribute)

T

 	
 	Tag (class in github3.git)

 	tag (github3.git.Tag attribute)

 	tag() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	tag_name (github3.repos.release.Release attribute)

 	tagger (github3.git.Tag attribute)

 	tags() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	tags_url (github3.repos.repo.ShortRepository attribute)

 	tarball_url (github3.repos.release.Release attribute)

 	(github3.repos.tag.RepoTag attribute)

 	target (github3.repos.contents.Contents attribute)

 	target_commitish (github3.repos.release.Release attribute)

 	target_id (github3.apps.Installation attribute)

 	target_type (github3.apps.Installation attribute)

 	target_url (github3.repos.deployment.DeploymentStatus attribute)

 	(github3.repos.status.ShortStatus attribute)

 	Team (class in github3.orgs)

 	team() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	teams() (github3.orgs.Organization method)

 	(github3.orgs.ShortOrganization method)

 	(github3.repos.branch.ProtectionRestrictions method)

 	(github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	teams_url (github3.repos.branch.ProtectionRestrictions attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	test() (github3.repos.hook.Hook method)

 	text_matches (github3.search.CodeSearchResult attribute)

 	(github3.search.IssueSearchResult attribute)

 	(github3.search.RepositorySearchResult attribute)

 	(github3.search.UserSearchResult attribute)

 	
 	Thread (class in github3.notifications)

 	thread_url (github3.notifications.ThreadSubscription attribute)

 	ThreadSubscription (class in github3.notifications)

 	title (github3.events.EventPullRequest attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	token (github3.auths.Authorization attribute)

 	token_last_eight (github3.auths.Authorization attribute)

 	topics() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	total (github3.repos.stats.ContributorStats attribute)

 	total_commits (github3.repos.comparison.Comparison attribute)

 	total_count (github3.repos.status.CombinedStatus attribute)

 	(github3.structs.SearchIterator attribute)

 	totoal (github3.gists.history.GistHistory attribute)

 	Tree (class in github3.git)

 	tree (github3.git.ShortCommit attribute)

 	(github3.git.Tree attribute)

 	tree() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	trees_urlt (github3.repos.repo.ShortRepository attribute)

 	truncated (github3.gists.file.GistFile attribute)

 	(github3.gists.gist.Gist attribute)

 	type (github3.events.Event attribute)

 	(github3.gists.file.ShortGistFile attribute)

 	(github3.git.GitObject attribute)

 	(github3.git.Hash attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.repos.contents.Contents attribute)

 	(github3.users.ShortUser attribute)

U

 	
 	unfollow() (github3.github.GitHub method)

 	unlock() (github3.issues.issue.Issue method)

 	(github3.issues.issue.ShortIssue method)

 	unread (github3.notifications.Thread attribute)

 	unstar() (github3.github.GitHub method)

 	unsuspend() (github3.users.AuthenticatedUser method)

 	(github3.users.Collaborator method)

 	(github3.users.Contributor method)

 	(github3.users.ShortUser method)

 	(github3.users.User method)

 	update() (github3.issues.label.Label method)

 	(github3.issues.milestone.Milestone method)

 	(github3.pulls.PullRequest method)

 	(github3.pulls.ShortPullRequest method)

 	(github3.repos.branch.BranchProtection method)

 	(github3.repos.branch.ProtectionRequiredPullRequestReviews method)

 	(github3.repos.branch.ProtectionRequiredStatusChecks method)

 	(github3.repos.contents.Contents method)

 	(github3.users.Key method)

 	update_me() (github3.github.GitHub method)

 	updated_at (github3.apps.App attribute)

 	(github3.apps.Installation attribute)

 	(github3.auths.Authorization attribute)

 	(github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.gists.gist.GistFork attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.issues.milestone.Milestone attribute)

 	(github3.notifications.Thread attribute)

 	(github3.orgs.Team attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.repos.deployment.Deployment attribute)

 	(github3.repos.hook.Hook attribute)

 	(github3.repos.issue_import.ImportedIssue attribute)

 	(github3.repos.pages.PagesBuild attribute)

 	(github3.repos.release.Asset attribute)

 	(github3.repos.repo.Repository attribute)

 	(github3.repos.status.ShortStatus attribute)

 	(github3.users.User attribute)

 	
 	upload_asset() (github3.repos.release.Release method)

 	upload_urlt (github3.repos.release.Release attribute)

 	url (github3.gists.gist.GistFork attribute)

 	(github3.gists.gist.ShortGist attribute)

 	(github3.gists.history.GistHistory attribute)

 	(github3.orgs.ShortOrganization attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.repo.ShortRepository attribute)

 	(github3.structs.GitHubIterator attribute)

 	(github3.users.ShortUser attribute)

 	User (class in github3.users)

 	user (github3.events.EventIssueComment attribute)

 	(github3.events.EventReviewComment attribute)

 	(github3.gists.history.GistHistory attribute)

 	(github3.issues.comment.IssueComment attribute)

 	(github3.issues.issue.ShortIssue attribute)

 	(github3.pulls.PullDestination attribute)

 	(github3.pulls.ReviewComment attribute)

 	(github3.pulls.ShortPullRequest attribute)

 	(github3.repos.comment.ShortComment attribute)

 	(github3.search.UserSearchResult attribute)

 	user() (github3.github.GitHub method)

 	(in module github3)

 	user_issues() (github3.github.GitHub method)

 	user_teams() (github3.github.GitHub method)

 	user_with_id() (github3.github.GitHub method)

 	users() (github3.repos.branch.ProtectionRestrictions method)

 	users_url (github3.repos.branch.ProtectionRestrictions attribute)

 	UserSearchResult (class in github3.search)

V

 	
 	verification (github3.git.Commit attribute)

 	
 	version (github3.gists.history.GistHistory attribute)

 	visibility (github3.users.Email attribute)

W

 	
 	watchers_count (github3.repos.repo.Repository attribute)

 	weekly_commit_count() (github3.repos.repo.Repository method)

 	(github3.repos.repo.ShortRepository method)

 	
 	weeks (github3.repos.stats.ContributorStats attribute)

Z

 	
 	zen() (github3.github.GitHub method)

 	(in module github3)

 	
 	zipball_url (github3.repos.release.Release attribute)

 	(github3.repos.tag.RepoTag attribute)

 _static/gh3-logo-transparent.png
github@®.py

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 github3.py: A Library for Using GitHub’s REST API

 		
 Using Two-factor Authentication with github3.py

 		
 Using Tokens for Your Projects

 		
 Requesting a token

 		
 Gist Code Examples

 		
 Listing gists after authenticating

 		
 Creating a gist after authenticating

 		
 Creating an anonymous gist

 		
 Git Code Examples

 		
 Creating a Blob Object

 		
 Creating a Tag Object

 		
 GitHub Examples

 		
 Assumptions

 		
 Adding a new key to your account

 		
 Deleting the key we just created

 		
 Creating a new repository

 		
 Create a commit to change an existing file

 		
 Follow another user on GitHub

 		
 Changing your user information

 		
 Issue Code Examples

 		
 Administering Issues

 		
 Closing and Commenting on Issues

 		
 Example issue to comment on

 		
 Importing an issue

 		
 Status of imported issue

 		
 Taking Advantage of GitHubIterator

 		
 The First Approach

 		
 The Second Approach

 		
 Using Logging with github3.py

 		
 A Conversation With Octocat

 		
 User Guide for github3.py

 		
 Getting Started

 		
 Using the library

 		
 Logging into GitHub using github3.py

 		
 Two-Factor Authentication and github3.py

 		
 Using the Repository APIs

 		
 Retrieving Repositories

 		
 Interacting with Repositories

 		
 API Reference

 		
 Anonymous Functional API

 		
 Module Contents

 		
 Enterprise Use

 		
 App and Installation API Objects

 		
 Authorizations API Classes

 		
 Events API Classes

 		
 The Event Object

 		
 Event Related Objects

 		
 Gist API Objects

 		
 Gist Representations

 		
 Files in a Gist

 		
 The History of a Gist

 		
 Git API Classes

 		
 Blob Object(s)

 		
 Commit Object(s)

 		
 Tree Object(s)

 		
 Git Object, Reference, and Tag Object(s)

 		
 GitHub Object

 		
 GitHub.com Object

 		
 GitHubEnterprise Object

 		
 GitHubStatus Object

 		
 GitHubSession Object

 		
 Issues API Objects

 		
 Issues

 		
 Issue Comments

 		
 Issue Events

 		
 Issue Labels

 		
 Milestone Objects

 		
 Notifications

 		
 Notification Objects

 		
 Organizations and their Related Objects

 		
 Team Objects

 		
 Organization Objects

 		
 Pull Requests and their Associated Objects

 		
 Pull Request Objects

 		
 Review Objects

 		
 Repository API Objects

 		
 Repository Objects

 		
 Git-related Objects

 		
 Release Objects

 		
 Pages Objects

 		
 Comment Objects

 		
 Deployment and Status Objects

 		
 Contributor Statistics Objects

 		
 Search Results

 		
 Custom Iterator Structures

 		
 Users and their Associated Objects

 		
 User Objects

 		
 AuthenticatedUser Peripherals

 		
 Internals

 		
 Decorators

 		
 Models

 		
 Release Notes and History

 		
 1.x Release Series

 		
 1.2.0: 2018-08-22

 		
 1.1.0: 2018-04-09

 		
 1.0.2: 2018-03-28

 		
 1.0.1: 2018-03-14

 		
 1.0.0: 2018-03-13

 		
 0.x Release Series

 		
 0.9.3: 2014-11-04

 		
 0.9.2: 2014-10-05

 		
 0.9.1: 2014-08-10

 		
 0.9.0: 2014-05-04

 		
 0.8.2: 2014-02-11

 		
 0.8.1: 2014-01-26

 		
 0.8.0: 2014-01-03

 		
 0.7.1: 2013-09-30

 		
 0.7.0: 2013-05-19

 		
 0.6.1: 2013-04-06

 		
 0.6.0: 2013-04-05

 		
 0.5.3: 2013-03-19

 		
 0.5.2: 2013-03-02

 		
 0.5.1: 2013-02-21

 		
 0.5.0: 2013-02-16

 		
 0.4.0: 2013-01-16

 		
 0.3.0: 2013-01-01

 		
 0.2.0: 2012-11-21

 		
 0.1.0: 2012-11-13

 		
 0.1b2: 2012-11-10

 		
 0.1b1: 2012-10-31

 		
 0.1b0: 2012-10-06

 		
 Writing Tests for github3.py

 		
 Unit Tests

 		
 Mocks

 		
 Example - Testing the Release Object

 		
 Integration Tests

 		
 Betamax

 		
 Example - Testing the Release Object

 		
 Recording Cassettes that Require Authentication/Authorization

_static/ajax-loader.gif

